BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 30254167)

  • 1. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition.
    Sun T; Hobbie SE; Berg B; Zhang H; Wang Q; Wang Z; Hättenschwiler S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10392-10397. PubMed ID: 30254167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.
    Fan P; Guo D
    Oecologia; 2010 Jun; 163(2):509-15. PubMed ID: 20058026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.
    Jo I; Fridley JD; Frank DA
    New Phytol; 2016 Jan; 209(1):115-22. PubMed ID: 26333347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycorrhizal and environmental controls over root trait-decomposition linkage of woody trees.
    Jiang L; Wang H; Li S; Fu X; Dai X; Yan H; Kou L
    New Phytol; 2021 Jan; 229(1):284-295. PubMed ID: 32761622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine roots and mycorrhizal fungi accelerate leaf litter decomposition in a northern hardwood forest regardless of dominant tree mycorrhizal associations.
    Lang AK; Jevon FV; Vietorisz CR; Ayres MP; Hatala Matthes J
    New Phytol; 2021 Apr; 230(1):316-326. PubMed ID: 33341954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species.
    Hobbie SE; Oleksyn J; Eissenstat DM; Reich PB
    Oecologia; 2010 Feb; 162(2):505-13. PubMed ID: 19882174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
    Chen W; Koide RT; Adams TS; DeForest JL; Cheng L; Eissenstat DM
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8741-6. PubMed ID: 27432986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.
    Vivanco L; Austin AT
    Oecologia; 2006 Nov; 150(1):97-107. PubMed ID: 16917779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests.
    Keller AB; Phillips RP
    New Phytol; 2019 Apr; 222(1):556-564. PubMed ID: 30299541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global patterns and drivers of initial plant litter ash concentration.
    Yang Q; Yue K; Wu F; Heděnec P; Ni X; Wang D; Yuan J; Yu J; Peng Y
    Sci Total Environ; 2022 Jul; 830():154702. PubMed ID: 35339550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting dynamics and factor controls in leaf compared with different-diameter fine root litter decomposition in secondary forests in the Qinling Mountains after 5 years of whole-tree harvesting.
    Pang Y; Tian J; Lv X; Wang R; Wang D; Zhang F
    Sci Total Environ; 2022 Sep; 838(Pt 2):156194. PubMed ID: 35618114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy.
    Langley JA; Chapman SK; Hungate BA
    Ecol Lett; 2006 Aug; 9(8):955-9. PubMed ID: 16913939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tree species effects on decomposition and forest floor dynamics in a common garden.
    Hobbie SE; Reich PB; Oleksyn J; Ogdahl M; Zytkowiak R; Hale C; Karolewski P
    Ecology; 2006 Sep; 87(9):2288-97. PubMed ID: 16995629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest.
    Brzostek ER; Dragoni D; Brown ZA; Phillips RP
    New Phytol; 2015 Jun; 206(4):1274-82. PubMed ID: 25627914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of chitin in the decomposition of ectomycorrhizal fungal litter.
    Fernandez CW; Koide RT
    Ecology; 2012 Jan; 93(1):24-8. PubMed ID: 22486083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resource-ratio theory predicts mycorrhizal control of litter decomposition.
    Smith GR; Wan J
    New Phytol; 2019 Aug; 223(3):1595-1606. PubMed ID: 31066058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.
    van Huysen TL; Harmon ME; Perakis SS; Chen H
    Oecologia; 2013 Dec; 173(4):1563-73. PubMed ID: 23884664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interspecific competition of tree plants in the presence of AM fungi and litter facilitates root morphological development and nutrition when compared with intraspecific competition.
    Guo Y; Shen K; Xia T; He Y; Ren W; Wu P; Lin Y; Wu B; Han X; Gao L; Li J; Hu X; Wang L; Jiao M; Yan J; Yang X; Yu H; Zhang J
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80496-80511. PubMed ID: 37300731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [C:N:P stoichiometry of leaves and fine roots in typical forest swamps of the Greater Hinggan Mountains, China].
    Liu XY; Hu YK
    Ying Yong Sheng Tai Xue Bao; 2020 Oct; 31(10):3385-3394. PubMed ID: 33314828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.