These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30254171)

  • 1. Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis.
    Scipion CPM; Ghoshdastider U; Ferrer FJ; Yuen TY; Wongsantichon J; Robinson RC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10345-10350. PubMed ID: 30254171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin.
    Carlier MF; Valentin-Ranc C; Combeau C; Fievez S; Pantoloni D
    Adv Exp Med Biol; 1994; 358():71-81. PubMed ID: 7801813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM.
    Merino F; Pospich S; Funk J; Wagner T; Küllmer F; Arndt HD; Bieling P; Raunser S
    Nat Struct Mol Biol; 2018 Jun; 25(6):528-537. PubMed ID: 29867215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release.
    Murakami K; Yasunaga T; Noguchi TQ; Gomibuchi Y; Ngo KX; Uyeda TQ; Wakabayashi T
    Cell; 2010 Oct; 143(2):275-87. PubMed ID: 20946985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.
    Saunders MG; Voth GA
    J Mol Biol; 2011 Oct; 413(1):279-91. PubMed ID: 21856312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin.
    Blanchoin L; Pollard TD
    Biochemistry; 2002 Jan; 41(2):597-602. PubMed ID: 11781099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of polymerization-competent actin.
    Klenchin VA; Khaitlina SY; Rayment I
    J Mol Biol; 2006 Sep; 362(1):140-50. PubMed ID: 16893553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New aspects of the spontaneous polymerization of actin in the presence of salts.
    Galińska-Rakoczy A; Wawro B; Strzelecka-Gołaszewska H
    J Mol Biol; 2009 Apr; 387(4):869-82. PubMed ID: 19340945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin.
    Valentin-Ranc C; Carlier MF
    J Biol Chem; 1991 Apr; 266(12):7668-75. PubMed ID: 2019592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin polymerization and ATP hydrolysis.
    Carlier MF
    Adv Biophys; 1990; 26():51-73. PubMed ID: 2082729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin.
    Carlier MF; Pantaloni D; Korn ED
    J Biol Chem; 1987 Mar; 262(7):3052-9. PubMed ID: 3818633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide.
    Kinosian HJ; Selden LA; Estes JE; Gershman LC
    Biochim Biophys Acta; 1991 Apr; 1077(2):151-8. PubMed ID: 2015289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clamped-filament elongation model for actin-based motors.
    Dickinson RB; Purich DL
    Biophys J; 2002 Feb; 82(2):605-17. PubMed ID: 11806905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of MeH73 in actin polymerization and ATP hydrolysis.
    Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U
    J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop.
    Wriggers W; Schulten K
    Biophys J; 1997 Aug; 73(2):624-39. PubMed ID: 9251782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tightly-bound divalent cation of actin.
    Estes JE; Selden LA; Kinosian HJ; Gershman LC
    J Muscle Res Cell Motil; 1992 Jun; 13(3):272-84. PubMed ID: 1527214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.