BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3025451)

  • 1. Co-operativity and enzymatic activity in polymer-activated enzymes. A one-dimensional piggy-back binding model and its application to the DNA-dependent ATPase of DNA gyrase.
    Chen Y; Maxwell A; Westerhoff HV
    J Mol Biol; 1986 Jul; 190(2):201-14. PubMed ID: 3025451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNA dependence of the ATPase activity of DNA gyrase.
    Maxwell A; Gellert M
    J Biol Chem; 1984 Dec; 259(23):14472-80. PubMed ID: 6094559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the DNA-dependent ATPase activity of human DNA topoisomerase IIbeta: mutation of Ser165 in the ATPase domain reduces the ATPase activity and abolishes the in vivo complementation ability.
    West KL; Turnbull RM; Willmore E; Lakey JH; Austin CA
    Nucleic Acids Res; 2002 Dec; 30(24):5416-24. PubMed ID: 12490710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal domain of human topoisomerase IIalpha is a DNA-dependent ATPase.
    Gardiner LP; Roper DI; Hammonds TR; Maxwell A
    Biochemistry; 1998 Dec; 37(48):16997-7004. PubMed ID: 9836594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting nucleotide thiophosphates to probe mechanistic aspects of Escherichia coli DNA gyrase.
    Cullis PM; Maxwell A; Weiner DP
    Biochemistry; 1997 May; 36(20):6059-68. PubMed ID: 9166776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNA dependence of the ATPase activity of human DNA topoisomerase IIalpha.
    Hammonds TR; Maxwell A
    J Biol Chem; 1997 Dec; 272(51):32696-703. PubMed ID: 9405488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs.
    Ali JA; Jackson AP; Howells AJ; Maxwell A
    Biochemistry; 1993 Mar; 32(10):2717-24. PubMed ID: 8383523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATP-operated clamp of human DNA topoisomerase IIalpha: hyperstimulation of ATPase by "piggy-back" binding.
    Campbell S; Maxwell A
    J Mol Biol; 2002 Jul; 320(2):171-88. PubMed ID: 12079377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric control by ATP of non-folded protein binding to GroEL.
    Yifrach O; Horovitz A
    J Mol Biol; 1996 Jan; 255(3):356-61. PubMed ID: 8568880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA.
    Slocum SL; Buss JA; Kimura Y; Bianco PR
    J Mol Biol; 2007 Mar; 367(3):647-64. PubMed ID: 17292398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of DNA gyrase with the bacterial toxin CcdB: evidence for the existence of two gyrase-CcdB complexes.
    Kampranis SC; Howells AJ; Maxwell A
    J Mol Biol; 1999 Oct; 293(3):733-44. PubMed ID: 10543963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of the ATP-operated clamp in the strand-passage reaction of DNA gyrase.
    Tingey AP; Maxwell A
    Nucleic Acids Res; 1996 Dec; 24(24):4868-73. PubMed ID: 9016655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between K+ and ATP binding to the (Na+ + K+)-dependent ATPase.
    Robinson JD
    Biochim Biophys Acta; 1975 Jul; 397(1):194-206. PubMed ID: 238633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and thermodynamic analysis of mutant type II DNA topoisomerases that cannot covalently cleave DNA.
    Morris SK; Harkins TT; Tennyson RB; Lindsley JE
    J Biol Chem; 1999 Feb; 274(6):3446-52. PubMed ID: 9920889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a residue involved in transition-state stabilization in the ATPase reaction of DNA gyrase.
    Smith CV; Maxwell A
    Biochemistry; 1998 Jul; 37(27):9658-67. PubMed ID: 9657678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Na+, K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis.
    Gache C; Rossi B; Lazdunski M
    Eur J Biochem; 1976 May; 65(1):293-306. PubMed ID: 132350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and enzymological characterization of a deoxyribonucleic acid dependent adenosine triphosphatase from KB cell nuclei.
    Boxer LM; Korn D
    Biochemistry; 1980 Jun; 19(12):2623-33. PubMed ID: 6104981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.