These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3025458)

  • 1. Na/H exchange in cultured chick heart cells: secondary stimulation of electrogenic transport during recovery from intracellular acidosis.
    Piwnica-Worms D; Jacob R; Shigeto N; Horres CR; Lieberman M
    J Mol Cell Cardiol; 1986 Nov; 18(11):1109-16. PubMed ID: 3025458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na/H exchange in cultured chick heart cells. pHi regulation.
    Piwnica-Worms D; Jacob R; Horres CR; Lieberman M
    J Gen Physiol; 1985 Jan; 85(1):43-64. PubMed ID: 3968533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular pH regulation in cultured embryonic chick heart cells. Na(+)-dependent Cl-/HCO3- exchange.
    Liu S; Piwnica-Worms D; Lieberman M
    J Gen Physiol; 1990 Dec; 96(6):1247-69. PubMed ID: 1962815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres.
    Deitmer JW; Ellis D
    J Physiol; 1980 Jul; 304():471-88. PubMed ID: 7441547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of (Na + K + 2 Cl) cotransport and the Na/K pump in cultured chick cardiac myocytes.
    Liu S; Jacob R; Piwnica-Worms D; Lieberman M
    Mol Cell Biochem; 1989 Sep; 89(2):147-50. PubMed ID: 2811863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-H+ exchange activity in rat hepatocytes: role in regulation of intracellular pH.
    Renner EL; Lake JR; Persico M; Scharschmidt BF
    Am J Physiol; 1989 Jan; 256(1 Pt 1):G44-52. PubMed ID: 2536240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells.
    Kim D; Cragoe EJ; Smith TW
    Circ Res; 1987 Feb; 60(2):185-93. PubMed ID: 2436825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: HCO3- dependence.
    Aickin CC
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):317-29. PubMed ID: 7528276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH.
    Lazdunski M; Frelin C; Vigne P
    J Mol Cell Cardiol; 1985 Nov; 17(11):1029-42. PubMed ID: 3001319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular pH in human arterial smooth muscle. Regulation by Na+/H+ exchange and a novel 5-(N-ethyl-N-isopropyl)amiloride-sensitive Na(+)- and HCO3(-)-dependent mechanism.
    Neylon CB; Little PJ; Cragoe EJ; Bobik A
    Circ Res; 1990 Oct; 67(4):814-25. PubMed ID: 2170052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sodium-potassium pump inhibition and low sodium on membrane potential in cultured embryonic chick heart cells.
    Jacob R; Lieberman M; Murphy E; Piwnica-Worms D
    J Physiol; 1987 Jun; 387():549-66. PubMed ID: 2443685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of partial Na pump and Na-H exchange inhibition on [Ca]i during acidosis in cardiac cells.
    Nakanishi T; Seguchi M; Tsuchiya T; Cragoe EJ; Takao A; Momma K
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C758-66. PubMed ID: 1659205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+)-HCO3- symport in the sheep cardiac Purkinje fibre.
    Dart C; Vaughan-Jones RD
    J Physiol; 1992; 451():365-85. PubMed ID: 1403816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of multiple trans-sarcolemmal cation flux pathways by dichlorobenzamil in cultured chick heart cells.
    Kim D; Smith TW
    Mol Pharmacol; 1986 Aug; 30(2):164-70. PubMed ID: 2426569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of intracellular pH in sheep cardiac Purkinje fibre: interactions among Na+, H+, and Ca2+1.
    Kaila K; Vaughan-Jones RD; Bountra C
    Can J Physiol Pharmacol; 1987 May; 65(5):963-9. PubMed ID: 3621056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ouabain inhibits intracellular pH recovery from acidosis in cultured mouse heart cells.
    Arisaka H; Ikeda U; Takayasu T; Takeda K; Natsume T; Hosoda S
    J Mol Cell Cardiol; 1988 Jan; 20(1):1-3. PubMed ID: 3367375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the Na+/H+ exchange system in the regulation of the internal pH in cultured cardiac cells.
    Frelin C; Vigne P; Lazdunski M
    Eur J Biochem; 1985 May; 149(1):1-4. PubMed ID: 2986967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport during hypothermia in cultured heart cells: implications for protection of the immature myocardium.
    Knerr SM; Lieberman M
    J Mol Cell Cardiol; 1993 Mar; 25(3):277-88. PubMed ID: 8389888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart.
    Frelin C; Vigne P; Lazdunski M
    J Biol Chem; 1984 Jul; 259(14):8880-5. PubMed ID: 6086615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular pH regulation in ferret ventricular muscle. The role of Na-H exchange and the influence of metabolic substrates.
    Blatter LA; McGuigan JA
    Circ Res; 1991 Jan; 68(1):150-61. PubMed ID: 1845852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.