These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 30254728)
1. Determination of the water gap and the germination ecology of Jaganathan GK; Yule KJ; Biddick M AoB Plants; 2018 Oct; 10(5):ply048. PubMed ID: 30254728 [TBL] [Abstract][Full Text] [Related]
2. Role of the lens in controlling physical dormancy break and germination of Delonix regia (Fabaceae: Caesalpinioideae). Jaganathan GK; Wu GR; Han YY; Liu BL Plant Biol (Stuttg); 2017 Jan; 19(1):53-60. PubMed ID: 26998975 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus adsurgens. Jaganathan GK; Li J; Biddick M; Han K; Song D; Yang Y; Han Y; Liu B Sci Rep; 2019 Jul; 9(1):9695. PubMed ID: 31273277 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2013 Jul; 112(1):69-84. PubMed ID: 23649182 [TBL] [Abstract][Full Text] [Related]
5. Seed dormancy-breaking in a cold desert shrub in relation to sand temperature and moisture. Liu H; Abudureheman B; Zhang L; Baskin JM; Baskin CC; Zhang D AoB Plants; 2017 Jan; 9(1):. PubMed ID: 28122736 [TBL] [Abstract][Full Text] [Related]
6. The changing window of conditions that promotes germination of two fire ephemerals, Actinotus leucocephalus (Apiaceae) and Tersonia cyathiflora (Gyrostemonaceae). Baker KS; Steadman KJ; Plummer JA; Merritt DJ; Dixon KW Ann Bot; 2005 Dec; 96(7):1225-36. PubMed ID: 16199485 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae). Rodrigues-Junior AG; Baskin CC; Baskin JM; Garcia QS Plant Biol (Stuttg); 2018 Jul; 20(4):698-706. PubMed ID: 29573088 [TBL] [Abstract][Full Text] [Related]
8. Why large seeds with physical dormancy become nondormant earlier than small ones. Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS PLoS One; 2018; 13(8):e0202038. PubMed ID: 30092026 [TBL] [Abstract][Full Text] [Related]
9. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae). Copete MA; Herranz JM; Ferrandis P; Copete E Plant Biol (Stuttg); 2015 Jul; 17(4):798-807. PubMed ID: 25598169 [TBL] [Abstract][Full Text] [Related]
10. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae) seeds. Luzia Delgado CM; Souza de Paula A; Santos M; Silveira Paulilo MT Rev Biol Trop; 2015 Mar; 63(1):285-94. PubMed ID: 26299132 [TBL] [Abstract][Full Text] [Related]
11. Unravelling the paradox in physically dormant species: elucidating the onset of dormancy after dispersal and dormancy-cycling. Jaganathan GK Ann Bot; 2022 Sep; 130(2):121-129. PubMed ID: 35737935 [TBL] [Abstract][Full Text] [Related]
12. The autumn effect: timing of physical dormancy break in seeds of two winter annual species of Geraniaceae by a stepwise process. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2012 Aug; 110(3):637-51. PubMed ID: 22684684 [TBL] [Abstract][Full Text] [Related]
13. Decoding the decisive role of seed moisture content in physical dormancy break: filling the missing links. Jaganathan GK; Harrison RJ Plant Biol (Stuttg); 2024 Jan; 26(1):3-10. PubMed ID: 38031719 [TBL] [Abstract][Full Text] [Related]
14. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae). Orozco-Segovia A; Márquez-Guzmán J; Sánchez-Coronado ME; Gamboa de Buen A; Baskin JM; Baskin CC Ann Bot; 2007 Apr; 99(4):581-92. PubMed ID: 17298989 [TBL] [Abstract][Full Text] [Related]
15. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling. Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC; Chien CT Ann Bot; 2008 Jul; 102(1):39-48. PubMed ID: 18453546 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of the water gap in the physically dormant seeds of Dodonaea petiolaris: a first report for Sapindaceae. Turner SR; Cook A; Baskin JM; Baskin CC; Tuckett RE; Steadman KJ; Dixon KW Ann Bot; 2009 Oct; 104(5):833-44. PubMed ID: 19620135 [TBL] [Abstract][Full Text] [Related]
17. The pleurogram, an under-investigated functional trait in seeds. Rodrigues-Junior AG; Baskin CC; Baskin JM; De-Paula OC Ann Bot; 2021 Jan; 127(2):167-174. PubMed ID: 32893847 [TBL] [Abstract][Full Text] [Related]
18. Occurrence of physical dormancy in seeds of Australian Sapindaceae: a survey of 14 species in nine genera. Cook A; Turner SR; Baskin JM; Baskin CC; Steadman KJ; Dixon KW Ann Bot; 2008 Jun; 101(9):1349-62. PubMed ID: 18369237 [TBL] [Abstract][Full Text] [Related]
19. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Zalamea PC; Sarmiento C; Arnold AE; Davis AS; Dalling JW Front Plant Sci; 2014; 5():799. PubMed ID: 25628640 [TBL] [Abstract][Full Text] [Related]
20. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal. Brancalion PH; Novembre AD; Rodrigues RR; Marcos Filho J Ann Bot; 2010 Jun; 105(6):991-8. PubMed ID: 20354070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]