BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 30255008)

  • 1. Bridging the Data Gap From
    Zhang Q; Li J; Middleton A; Bhattacharya S; Conolly RB
    Front Public Health; 2018; 6():261. PubMed ID: 30255008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2022 Nov; 312():120041. PubMed ID: 36030954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish Physiologically Based Toxicokinetic Modeling Approach for In Vitro-In Vivo and Cross-Species Extrapolation of Endocrine-Disrupting Chemicals in Risk Assessment.
    Xie R; Xu Y; Ma M; Wang Z
    Environ Sci Technol; 2024 Feb; 58(8):3677-3689. PubMed ID: 38354091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches.
    Coecke S; Pelkonen O; Leite SB; Bernauer U; Bessems JG; Bois FY; Gundert-Remy U; Loizou G; Testai E; Zaldívar JM
    Toxicol In Vitro; 2013 Aug; 27(5):1570-7. PubMed ID: 22771339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone.
    Yu L; Li H; Zhang C; Zhang Q; Guo J; Li J; Yuan H; Li L; Carmichael P; Peng S
    Environ Toxicol Pharmacol; 2020 Feb; 74():103296. PubMed ID: 31783317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput PBTK models for
    Breen M; Ring CL; Kreutz A; Goldsmith MR; Wambaugh JF
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):903-921. PubMed ID: 34056988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment.
    Adeleye Y; Andersen M; Clewell R; Davies M; Dent M; Edwards S; Fowler P; Malcomber S; Nicol B; Scott A; Scott S; Sun B; Westmoreland C; White A; Zhang Q; Carmichael PL
    Toxicology; 2015 Jun; 332():102-11. PubMed ID: 24582757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an Accessible Interface for Pharmacokinetic Modeling and
    Hines DE; Bell S; Chang X; Mansouri K; Allen D; Kleinstreuer N
    Front Pharmacol; 2022; 13():864742. PubMed ID: 35496281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds.
    Fabian E; Gomes C; Birk B; Williford T; Hernandez TR; Haase C; Zbranek R; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2019 Feb; 93(2):401-416. PubMed ID: 30552464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance.
    Xie R; Wang X; Xu Y; Zhang L; Ma M; Wang Z
    Sci Total Environ; 2023 Nov; 897():165271. PubMed ID: 37422235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework.
    Thomas RS; Philbert MA; Auerbach SS; Wetmore BA; Devito MJ; Cote I; Rowlands JC; Whelan MP; Hays SM; Andersen ME; Meek ME; Reiter LW; Lambert JC; Clewell HJ; Stephens ML; Zhao QJ; Wesselkamper SC; Flowers L; Carney EW; Pastoor TP; Petersen DD; Yauk CL; Nong A
    Toxicol Sci; 2013 Nov; 136(1):4-18. PubMed ID: 23958734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology.
    Groh KJ; Carvalho RN; Chipman JK; Denslow ND; Halder M; Murphy CA; Roelofs D; Rolaki A; Schirmer K; Watanabe KH
    Chemosphere; 2015 Feb; 120():764-77. PubMed ID: 25439131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a rapid, generic human gestational dose model.
    Kapraun DF; Sfeir M; Pearce RG; Davidson-Fritz SE; Lumen A; Dallmann A; Judson RS; Wambaugh JF
    Reprod Toxicol; 2022 Oct; 113():172-188. PubMed ID: 36122840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAM-based prediction of point-of-contact toxicity in the lung: A case example with 1,3-dichloropropene.
    Moreau M; Fisher J; Andersen ME; Barnwell A; Corzine S; Ranade A; McMullen PD; Slattery SD
    Toxicology; 2022 Nov; 481():153340. PubMed ID: 36183849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling.
    Brinkmann M; Preuss TG; Hollert H
    Adv Biochem Eng Biotechnol; 2017; 157():293-317. PubMed ID: 27619489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study.
    Watanabe KH; Andersen ME; Basu N; Carvan MJ; Crofton KM; King KA; Suñol C; Tiffany-Castiglioni E; Schultz IR
    Environ Toxicol Chem; 2011 Jan; 30(1):9-21. PubMed ID: 20963854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically-based kinetic modeling of vapours toxic to the respiratory tract.
    Bogdanffy MS; Sarangapani R
    Toxicol Lett; 2003 Feb; 138(1-2):103-17. PubMed ID: 12559695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.
    Ducrot V; Ashauer R; Bednarska AJ; Hinarejos S; Thorbek P; Weyman G
    Integr Environ Assess Manag; 2016 Jan; 12(1):32-45. PubMed ID: 25833822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the Metal Mixture Toxicity with a Toxicokinetic-Toxicodynamic Model Considering the Time-Dependent Adverse Outcome Pathways.
    Yang L; Zeng J; Gao N; Zhu L; Feng J
    Environ Sci Technol; 2024 Feb; 58(8):3714-3725. PubMed ID: 38350648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the Adverse Outcome Pathway Concept to
    Jarzina S; Di Fiore S; Ellinger B; Reiser P; Frank S; Glaser M; Wu J; Taverne FJ; Kramer NI; Mally A
    Front Toxicol; 2022; 4():864441. PubMed ID: 35516525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.