These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 30255175)
1. Spying on protein interactions in living cells with reconstituted scarlet light. Wang S; Ding M; Xue B; Hou Y; Sun Y Analyst; 2018 Oct; 143(21):5161-5169. PubMed ID: 30255175 [TBL] [Abstract][Full Text] [Related]
2. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow. Wang S; Ding M; Xue B; Hou Y; Sun Y ACS Chem Biol; 2018 May; 13(5):1180-1188. PubMed ID: 29283249 [TBL] [Abstract][Full Text] [Related]
3. Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Shyu YJ; Suarez CD; Hu CD Proc Natl Acad Sci U S A; 2008 Jan; 105(1):151-6. PubMed ID: 18172215 [TBL] [Abstract][Full Text] [Related]
4. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. Robida AM; Kerppola TK J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184 [TBL] [Abstract][Full Text] [Related]
5. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells. Pratt EP; Owens JL; Hockerman GH; Hu CD Methods Mol Biol; 2016; 1474():153-70. PubMed ID: 27515079 [TBL] [Abstract][Full Text] [Related]
6. Three-Fragment Fluorescence Complementation for Imaging of Ternary Complexes under Physiological Conditions. Chen M; Li W; Zhang ZP; Pan J; Sun Y; Zhang X; Zhang XE; Cui Z Anal Chem; 2018 Nov; 90(22):13299-13305. PubMed ID: 30365299 [TBL] [Abstract][Full Text] [Related]
7. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses. Camuzeaux B; Spriet C; Héliot L; Coll J; Duterque-Coquillaud M Biochem Biophys Res Commun; 2005 Jul; 332(4):1107-14. PubMed ID: 15922298 [TBL] [Abstract][Full Text] [Related]
8. Recent advances using green and red fluorescent protein variants. Müller-Taubenberger A; Anderson KI Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916 [TBL] [Abstract][Full Text] [Related]
9. Improvement of a Venus-based bimolecular fluorescence complementation assay to visualize bFos-bJun interaction in living cells. Nakagawa C; Inahata K; Nishimura S; Sugimoto K Biosci Biotechnol Biochem; 2011; 75(7):1399-401. PubMed ID: 21737916 [TBL] [Abstract][Full Text] [Related]
10. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Hu CD; Chinenov Y; Kerppola TK Mol Cell; 2002 Apr; 9(4):789-98. PubMed ID: 11983170 [TBL] [Abstract][Full Text] [Related]
11. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling. Szalóki N; Krieger JW; Komáromi I; Tóth K; Vámosi G Mol Cell Biol; 2015 Nov; 35(21):3785-98. PubMed ID: 26303532 [TBL] [Abstract][Full Text] [Related]
12. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565 [TBL] [Abstract][Full Text] [Related]
13. Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM). Nickerson A; Huang T; Lin LJ; Nan X J Vis Exp; 2015 Dec; (106):e53154. PubMed ID: 26779930 [TBL] [Abstract][Full Text] [Related]
14. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Shyu YJ; Liu H; Deng X; Hu CD Biotechniques; 2006 Jan; 40(1):61-6. PubMed ID: 16454041 [TBL] [Abstract][Full Text] [Related]
15. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement. Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218 [TBL] [Abstract][Full Text] [Related]
16. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. Nickerson A; Huang T; Lin LJ; Nan X PLoS One; 2014; 9(6):e100589. PubMed ID: 24963703 [TBL] [Abstract][Full Text] [Related]
17. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Fan JY; Cui ZQ; Wei HP; Zhang ZP; Zhou YF; Wang YP; Zhang XE Biochem Biophys Res Commun; 2008 Feb; 367(1):47-53. PubMed ID: 18158915 [TBL] [Abstract][Full Text] [Related]
18. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Bindels DS; Haarbosch L; van Weeren L; Postma M; Wiese KE; Mastop M; Aumonier S; Gotthard G; Royant A; Hink MA; Gadella TW Nat Methods; 2017 Jan; 14(1):53-56. PubMed ID: 27869816 [TBL] [Abstract][Full Text] [Related]
19. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. McCullock TW; MacLean DM; Kammermeier PJ PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253 [TBL] [Abstract][Full Text] [Related]
20. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Shyu YJ; Suarez CD; Hu CD Nat Protoc; 2008; 3(11):1693-702. PubMed ID: 18846096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]