These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30255361)

  • 41. Field experiment of a telesurgery system using a surgical robot with haptic feedback.
    Ota M; Oki E; Nakanoko T; Tanaka Y; Toyota S; Hu Q; Nakaji Y; Nakanishi R; Ando K; Kimura Y; Hisamatsu Y; Mimori K; Takahashi Y; Morohashi H; Kanno T; Tadano K; Kawashima K; Takano H; Ebihara Y; Shiota M; Inokuchi J; Eto M; Yoshizumi T; Hakamada K; Hirano S; Mori M
    Surg Today; 2024 Apr; 54(4):375-381. PubMed ID: 37653350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An admittance-controlled amplified force tracking scheme for collaborative lumbar puncture surgical robot system.
    Li H; Nie X; Duan D; Li Y; Zhang J; Zhou M; Magid E
    Int J Med Robot; 2022 Oct; 18(5):e2428. PubMed ID: 35649724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-Situ Force Augmentation Improves Surface Contact and Force Control.
    Lee R; Klatzky RL; Stetten GD
    IEEE Trans Haptics; 2017; 10(4):545-554. PubMed ID: 28436890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Haptic interface for robot-assisted ophthalmic surgery.
    Barthel A; Trematerra D; Nasseri MA; Zapp D; Lohmann CP; Knoll A; Maier M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4906-9. PubMed ID: 26737392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A single port surgical robot system with novel elbow joint mechanism for high force transmission.
    Hwang M; Yang UJ; Kong D; Chung DG; Lim JG; Lee DH; Kim DH; Shin D; Jang T; Kim JW; Kwon DS
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28371219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks.
    Saracino A; Deguet A; Staderini F; Boushaki MN; Cianchi F; Menciassi A; Sinibaldi E
    Int J Med Robot; 2019 Aug; 15(4):e1999. PubMed ID: 30970387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Body-Mounted MR-Conditional Robot for Minimally Invasive Liver Intervention.
    Huang Z; Gunderman AL; Wilcox SE; Sengupta S; Shah J; Lu A; Woodrum D; Chen Y
    Ann Biomed Eng; 2024 Aug; 52(8):2065-2075. PubMed ID: 38634953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Needle insertion into soft tissue: a survey.
    Abolhassani N; Patel R; Moallem M
    Med Eng Phys; 2007 May; 29(4):413-31. PubMed ID: 16938481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery.
    Guo X; McFall F; Jiang P; Liu J; Lepora N; Zhang D
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732782
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental evaluation of a coaxial needle insertion assistant with enhanced force feedback.
    De Lorenzo D; Koseki Y; De Momi E; Chinzei K; Okamura AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3447-50. PubMed ID: 22255081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and Evaluation of Haptic Guidance in Ultrasound-Based Needle-Insertion Procedures.
    Raitor M; Nunez CM; Stolka PJ; Okamura AM; Culbertson H
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):26-35. PubMed ID: 37384470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pneumatically driven surgical instrument capable of estimating translational force and grasping force.
    Miyazaki R; Kanno T; Kawashima K
    Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.
    Shang W; Su H; Li G; Fischer GS
    Rep U S; 2013; 2013():4092-4098. PubMed ID: 25126446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.