These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30255405)

  • 21. Identifying high performance gold nanoshells for singlet oxygen generation enhancement.
    Farooq S; de Araujo RE
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.
    Khoury CG; Norton SJ; Vo-Dinh T
    ACS Nano; 2009 Sep; 3(9):2776-88. PubMed ID: 19678677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness.
    Zhu J
    Appl Opt; 2008 Nov; 47(31):5848-52. PubMed ID: 19122726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation and experimental results of optical and thermal modeling of gold nanoshells.
    Ghazanfari L; Khosroshahi ME
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():185-91. PubMed ID: 25063109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy.
    Sikdar D; Rukhlenko ID; Cheng W; Premaratne M
    Biomed Opt Express; 2013 Jan; 4(1):15-31. PubMed ID: 23304644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-particle absorption spectroscopy by photothermal contrast.
    Yorulmaz M; Nizzero S; Hoggard A; Wang LY; Cai YY; Su MN; Chang WS; Link S
    Nano Lett; 2015 May; 15(5):3041-7. PubMed ID: 25849105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanorods: from synthesis and properties to biological and biomedical applications.
    Huang X; Neretina S; El-Sayed MA
    Adv Mater; 2009 Dec; 21(48):4880-4910. PubMed ID: 25378252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized gold nanoshell ensembles for biomedical applications.
    Sikdar D; Rukhlenko ID; Cheng W; Premaratne M
    Nanoscale Res Lett; 2013 Mar; 8(1):142. PubMed ID: 23537206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunotargeted nanoshells for integrated cancer imaging and therapy.
    Loo C; Lowery A; Halas N; West J; Drezek R
    Nano Lett; 2005 Apr; 5(4):709-11. PubMed ID: 15826113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.
    Lin AW; Lewinski NA; West JL; Halas NJ; Drezek RA
    J Biomed Opt; 2005; 10(6):064035. PubMed ID: 16409100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of Gold Nanoparticle Ultraviolet-Visible Extinction, Absorption, and Scattering Cross-Section Spectra and Scattering Depolarization Spectra: The Effects of Nanoparticle Geometry, Solvent Composition, Ligand Functionalization, and Nanoparticle Aggregation.
    Xu JX; Siriwardana K; Zhou Y; Zou S; Zhang D
    Anal Chem; 2018 Jan; 90(1):785-793. PubMed ID: 29171268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Cascading Optical Processes: Part II: Impacts on Experimental Quantification of Sample Absorption and Scattering Properties.
    Wathudura P; Wamsley M; Wang A; Chen K; Nawalage S; Wang H; Zou S; Zhang D
    Anal Chem; 2023 Mar; 95(9):4461-4469. PubMed ID: 36787490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.
    Mejac I; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light absorption enhancement in thin silicon film by embedded metallic nanoshells.
    Guilatt O; Apter B; Efron U
    Opt Lett; 2010 Apr; 35(8):1139-41. PubMed ID: 20410945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering.
    Xie H; Gill-Sharp KL; O'Neal DP
    Nanomedicine; 2007 Mar; 3(1):89-94. PubMed ID: 17379173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
    Peukert D; Kempson I; Douglass M; Bezak E
    Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.