BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30255763)

  • 1. Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries.
    Gomes MTMS; Santana ÁL; Santos DT; Meireles MAA
    Recent Pat Food Nutr Agric; 2019; 10(2):82-92. PubMed ID: 30255763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions.
    Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation.
    Oliveira GE; Pinto JF
    AAPS PharmSciTech; 2017 Oct; 18(7):2792-2807. PubMed ID: 28382603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal doping aided by rapid expansion of supercritical solutions.
    Vemavarapu C; Mollan MJ; Needham TE
    AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of micronized artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method.
    Yu H; Zhao X; Zu Y; Zhang X; Zu B; Zhang X
    Int J Mol Sci; 2012; 13(4):5060-5073. PubMed ID: 22606030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ optical monitoring of RDX nanoparticles formation during rapid expansion of supercritical CO2 solutions.
    Matsunaga T; Chernyshev AV; Chesnokov EN; Krasnoperov LN
    Phys Chem Chem Phys; 2007 Oct; 9(38):5249-59. PubMed ID: 19459288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Characterization of Beclomethasone Dipropionate Nanoparticles Using Rapid Expansion of Supercritical Solution.
    Hosseinpour M; Vatanara A; Zarghami R
    Adv Pharm Bull; 2015 Sep; 5(3):343-9. PubMed ID: 26504756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach.
    Asghari I; Esmaeilzadeh F
    Int J Pharm; 2012 Aug; 433(1-2):149-56. PubMed ID: 22583849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research activities on supercritical fluid science in food biotechnology.
    Khosravi-Darani K
    Crit Rev Food Sci Nutr; 2010 Jun; 50(6):479-88. PubMed ID: 20544439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Box-Behnken Design to Investigate the Effect of Process Parameters on the Microparticle Production of Ethenzamide through the Rapid Expansion of the Supercritical Solutions Process.
    Hsu YT; Su CS
    Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31947846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution.
    Moribe K; Tsutsumi S; Morishita S; Shinozaki H; Tozuka Y; Oguchi T; Yamamoto K
    Chem Pharm Bull (Tokyo); 2005 Aug; 53(8):1025-8. PubMed ID: 16079541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying.
    Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN
    Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles].
    Zhang ZY; Li HL; Lei ZJ
    Zhongguo Zhong Yao Za Zhi; 2006 Dec; 31(23):1933-6. PubMed ID: 17348181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques.
    Soh SH; Lee LY
    Pharmaceutics; 2019 Jan; 11(1):. PubMed ID: 30621309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric nanoparticles from rapid expansion of supercritical fluid solution.
    Sun YP; Meziani MJ; Pathak P; Qu L
    Chemistry; 2005 Feb; 11(5):1366-73. PubMed ID: 15390139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions.
    Shinozaki H; Oguchi T; Suzuki S; Aoki K; Sako T; Morishita S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2006 Aug; 32(7):877-91. PubMed ID: 16908425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.