BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

910 related articles for article (PubMed ID: 30255801)

  • 21. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder.
    Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X
    Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated multiomic predictors for ovarian cancer survival.
    Fu A; Chang HR; Zhang ZF
    Carcinogenesis; 2018 Jul; 39(7):860-868. PubMed ID: 29897425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
    Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH
    J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MOBCdb: a comprehensive database integrating multi-omics data on breast cancer for precision medicine.
    Xie B; Yuan Z; Yang Y; Sun Z; Zhou S; Fang X
    Breast Cancer Res Treat; 2018 Jun; 169(3):625-632. PubMed ID: 29429018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer-a bioinformatics integrative analysis.
    Cao T; Pan W; Sun X; Shen H
    J Ovarian Res; 2019 Oct; 12(1):101. PubMed ID: 31656201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.
    Moon M; Nakai K
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850006. PubMed ID: 29566639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
    Chaudhary K; Poirion OB; Lu L; Garmire LX
    Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer.
    Li JY; Li CJ; Lin LT; Tsui KH
    Cancer Control; 2020; 27(1):1073274820976671. PubMed ID: 33297760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
    Kim I; Choi S; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supervised Relevance-Redundancy assessments for feature selection in omics-based classification scenarios.
    Cascianelli S; Galzerano A; Masseroli M
    J Biomed Inform; 2023 Aug; 144():104457. PubMed ID: 37488024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capsule Network Based Modeling of Multi-omics Data for Discovery of Breast Cancer-Related Genes.
    Peng C; Zheng Y; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1605-1612. PubMed ID: 30969931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classifying breast cancer using multi-view graph neural network based on multi-omics data.
    Ren Y; Gao Y; Du W; Qiao W; Li W; Yang Q; Liang Y; Li G
    Front Genet; 2024; 15():1363896. PubMed ID: 38444760
    [No Abstract]   [Full Text] [Related]  

  • 37. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data.
    Lin Y; Zhang W; Cao H; Li G; Du W
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32759821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide analysis of multi-view data of miRNA-seq to identify miRNA biomarkers for stomach cancer.
    Pant N; Rakshit S; Paul S; Saha I
    J Biomed Inform; 2019 Sep; 97():103254. PubMed ID: 31352060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feature set optimization in biomarker discovery from genome-scale data.
    Fortino V; Scala G; Greco D
    Bioinformatics; 2020 Jun; 36(11):3393-3400. PubMed ID: 32119073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.