BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30255802)

  • 1. Economic benefits of microprocessor controlled prosthetic knees: a modeling study.
    Chen C; Hanson M; Chaturvedi R; Mattke S; Hillestad R; Liu HH
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):62. PubMed ID: 30255802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus.
    Kuhlmann A; Krüger H; Seidinger S; Hahn A
    Eur J Health Econ; 2020 Apr; 21(3):437-449. PubMed ID: 31897813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Kenevo microprocessor-controlled prosthetic knee compared with non-microprocessor-controlled knees in individuals older than 65 years in Sweden: A cost-effectiveness and budget-impact analysis.
    Kuhlmann A; Hagberg K; Kamrad I; Ramstrand N; Seidinger S; Berg H
    Prosthet Orthot Int; 2022 Oct; 46(5):414-424. PubMed ID: 35511441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review.
    Kannenberg A; Zacharias B; Pröbsting E
    J Rehabil Res Dev; 2014; 51(10):1469-96. PubMed ID: 25856664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial.
    Lansade C; Vicaut E; Paysant J; Ménager D; Cristina MC; Braatz F; Domayer S; Pérennou D; Chiesa G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):278-285. PubMed ID: 29753888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mobility and user satisfaction between a microprocessor knee and a standard prosthetic knee: a summary of seven single-subject trials.
    Howard CL; Wallace C; Perry B; Stokic DS
    Int J Rehabil Res; 2018 Mar; 41(1):63-73. PubMed ID: 29293160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial.
    Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A
    J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis.
    Hahn A; Bueschges S; Prager M; Kannenberg A
    Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transfemoral amputation.
    Davie-Smith F; Carse B
    Prosthet Orthot Int; 2021 Jun; 45(3):198-204. PubMed ID: 34016872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.
    Fuenzalida Squella SA; Kannenberg A; Brandão Benetti Â
    Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of microprocessor prosthetic knee on mobility and quality of life in patients with lower limb amputation: a systematic review of the literature.
    Thibaut A; Beaudart C; Maertens DE Noordhout B; Geers S; Kaux JF; Pelzer D
    Eur J Phys Rehabil Med; 2022 Jun; 58(3):452-461. PubMed ID: 35148043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees.
    Kaufman KR; Bernhardt KA; Symms K
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():116-122. PubMed ID: 30077128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and Falls Evaluations in AMPutees (SAFE-AMP 1): Microprocessor knee technology reduces odds of incurring an injurious fall for individuals with diabetic/dysvascular amputation.
    Wurdeman SR; Miller TA; Stevens PM; Campbell JH
    Assist Technol; 2023 May; 35(3):205-210. PubMed ID: 34870561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can microprocessor knees reduce the disparity in trips and falls risks between above and below knee prosthesis users?
    McGrath M; Gray LA; Rek B; Davies KC; Savage Z; McLean J; Stenson A; Zahedi S
    PLoS One; 2022; 17(9):e0271315. PubMed ID: 36054087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of gait outcomes for individuals with established unilateral transfemoral amputation following the provision of microprocessor controlled knees in the context of a clinical service.
    Carse B; Scott H; Brady L; Colvin J
    Prosthet Orthot Int; 2021 Jun; 45(3):254-261. PubMed ID: 34016870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.