These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30255865)
1. Self-assembly of penta-selenopeptides into amyloid fibrils. Gokula RP; Mahato J; Singh HB; Chowdhury A Chem Commun (Camb); 2018 Oct; 54(83):11697-11700. PubMed ID: 30255865 [TBL] [Abstract][Full Text] [Related]
2. Water-soluble beta-sheet models which self-assemble into fibrillar structures. Janek K; Behlke J; Zipper J; Fabian H; Georgalis Y; Beyermann M; Bienert M; Krause E Biochemistry; 1999 Jun; 38(26):8246-52. PubMed ID: 10387070 [TBL] [Abstract][Full Text] [Related]
3. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks. Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688 [TBL] [Abstract][Full Text] [Related]
4. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity. Satheeshkumar KS; Murali J; Jayakumar R J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098 [TBL] [Abstract][Full Text] [Related]
5. Mutational analysis of designed peptides that undergo structural transition from alpha helix to beta sheet and amyloid fibril formation. Takahashi Y; Ueno A; Mihara H Structure; 2000 Sep; 8(9):915-25. PubMed ID: 10986459 [TBL] [Abstract][Full Text] [Related]
6. Transformation of the amyloidogenic peptide amylin(20-29) into its corresponding peptoid and retropeptoid: access to both an amyloid inhibitor and template for self-assembled supramolecular tapes. Elgersma RC; Mulder GE; Kruijtzer JA; Posthuma G; Rijkers DT; Liskamp RM Bioorg Med Chem Lett; 2007 Apr; 17(7):1837-42. PubMed ID: 17276062 [TBL] [Abstract][Full Text] [Related]
7. The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides. Bowerman CJ; Ryan DM; Nissan DA; Nilsson BL Mol Biosyst; 2009 Sep; 5(9):1058-69. PubMed ID: 19668872 [TBL] [Abstract][Full Text] [Related]
8. Featuring amyloids with Fourier transform infrared and circular dichroism spectroscopies. Calero M; Gasset M Methods Mol Biol; 2012; 849():53-68. PubMed ID: 22528083 [TBL] [Abstract][Full Text] [Related]
9. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391 [TBL] [Abstract][Full Text] [Related]
10. Fourier transform infrared and circular dichroism spectroscopies for amyloid studies. Calero M; Gasset M Methods Mol Biol; 2005; 299():129-51. PubMed ID: 15980599 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. Tamburro AM; Pepe A; Bochicchio B; Quaglino D; Ronchetti IP J Biol Chem; 2005 Jan; 280(4):2682-90. PubMed ID: 15550396 [TBL] [Abstract][Full Text] [Related]
12. Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250). Yau J; Sharpe S J Struct Biol; 2012 Nov; 180(2):290-302. PubMed ID: 22929126 [TBL] [Abstract][Full Text] [Related]
13. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810 [TBL] [Abstract][Full Text] [Related]
14. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy. Paulite M; Fakhraai Z; Li IT; Gunari N; Tanur AE; Walker GC J Am Chem Soc; 2011 May; 133(19):7376-83. PubMed ID: 21524071 [TBL] [Abstract][Full Text] [Related]
15. The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. Sawyer EB; Claessen D; Haas M; Hurgobin B; Gras SL PLoS One; 2011 Apr; 6(4):e18839. PubMed ID: 21526199 [TBL] [Abstract][Full Text] [Related]
16. Organic solvent mediated self-association of an amyloid forming peptide from beta2-microglobulin: an atomic force microscopy study. Chaudhary N; Singh S; Nagaraj R Biopolymers; 2008; 90(6):783-91. PubMed ID: 18798577 [TBL] [Abstract][Full Text] [Related]
17. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation. Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151 [TBL] [Abstract][Full Text] [Related]
18. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Takahashi Y; Mihara H Bioorg Med Chem; 2004 Feb; 12(4):693-9. PubMed ID: 14759730 [TBL] [Abstract][Full Text] [Related]
19. Amyloid fibril formation by a normally folded protein in the absence of denaturants and agitation. Shokri MM; Ahmadian S; Bemporad F; Khajeh K; Chiti F Amyloid; 2013 Dec; 20(4):226-32. PubMed ID: 24053331 [TBL] [Abstract][Full Text] [Related]
20. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils. Takahashi Y; Ueno A; Mihara H Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]