BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 30255869)

  • 1. 3D scaffolds for brain tissue regeneration: architectural challenges.
    Mahumane GD; Kumar P; du Toit LC; Choonara YE; Pillay V
    Biomater Sci; 2018 Oct; 6(11):2812-2837. PubMed ID: 30255869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering.
    Alvarado-Hidalgo F; Ramírez-Sánchez K; Starbird-Perez R
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine.
    Shirwaiker RA; Fisher MB; Anderson B; Schuchard KG; Warren PB; Maze B; Grondin P; Ligler FS; Pourdeyhimi B
    Tissue Eng Part C Methods; 2020 Jul; 26(7):364-374. PubMed ID: 32552453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.
    Boga JC; Miguel SP; de Melo-Diogo D; Mendonça AG; Louro RO; Correia IJ
    Colloids Surf B Biointerfaces; 2018 May; 165():207-218. PubMed ID: 29486449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials.
    Da Silva K; Kumar P; Choonara YE; du Toit LC; Pillay V
    J Biomed Mater Res A; 2020 Dec; 108(12):2324-2350. PubMed ID: 32363804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.
    Schipani R; Nolan DR; Lally C; Kelly DJ
    Connect Tissue Res; 2020 Mar; 61(2):174-189. PubMed ID: 31495233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits.
    Dixon AR; Jariwala SH; Bilis Z; Loverde JR; Pasquina PF; Alvarez LM
    Biomaterials; 2018 Dec; 186():44-63. PubMed ID: 30278345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update on the main use of biomaterials and techniques associated with tissue engineering.
    Steffens D; Braghirolli DI; Maurmann N; Pranke P
    Drug Discov Today; 2018 Aug; 23(8):1474-1488. PubMed ID: 29608960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.
    Lan PX; Lee JW; Seol YJ; Cho DW
    J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.