These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 30256092)
1. Evaluation of the Capitainer-B Microfluidic Device as a New Hematocrit-Independent Alternative for Dried Blood Spot Collection. Velghe S; Stove CP Anal Chem; 2018 Nov; 90(21):12893-12899. PubMed ID: 30256092 [TBL] [Abstract][Full Text] [Related]
2. Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. De Kesel PM; Lambert WE; Stove CP Anal Chim Acta; 2015 Jun; 881():65-73. PubMed ID: 26041521 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the Performance and Hematocrit Independence of the HemaPEN as a Volumetric Dried Blood Spot Collection Device. Deprez S; Paniagua-González L; Velghe S; Stove CP Anal Chem; 2019 Nov; 91(22):14467-14475. PubMed ID: 31638372 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a Volumetric Dried Blood Spot Card Using a Gravimetric Method and a Bioanalytical Method with Capillary Blood from 44 Volunteers. Lenk G; Ullah S; Stemme G; Beck O; Roxhed N Anal Chem; 2019 May; 91(9):5558-5565. PubMed ID: 30856315 [TBL] [Abstract][Full Text] [Related]
5. Potassium-based algorithm allows correction for the hematocrit bias in quantitative analysis of caffeine and its major metabolite in dried blood spots. De Kesel PM; Capiau S; Stove VV; Lambert WE; Stove CP Anal Bioanal Chem; 2014 Oct; 406(26):6749-55. PubMed ID: 25168119 [TBL] [Abstract][Full Text] [Related]
6. Manual punch versus automated flow-through sample desorption for dried blood spot LC-MS/MS analysis of voriconazole. Martial LC; van den Hombergh E; Tump C; Halmingh O; Burger DM; van Maarseveen EM; Brüggemann RJ; Aarnoutse RE J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1089():16-23. PubMed ID: 29747155 [TBL] [Abstract][Full Text] [Related]
7. New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Leuthold LA; Heudi O; Déglon J; Raccuglia M; Augsburger M; Picard F; Kretz O; Thomas A Anal Chem; 2015 Feb; 87(4):2068-71. PubMed ID: 25607538 [TBL] [Abstract][Full Text] [Related]
8. LC-MS/MS bioanalysis of loratadine (Claritin) in dried blood spot (DBS) samples collected by subjects in a clinical research study. Li W; Doherty J; Moench P; Flarakos J; Tse FL J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 983-984():117-24. PubMed ID: 25645810 [TBL] [Abstract][Full Text] [Related]
9. Hematocrit-Independent Quantitation of Stimulants in Dried Blood Spots: Pipet versus Microfluidic-Based Volumetric Sampling Coupled with Automated Flow-Through Desorption and Online Solid Phase Extraction-LC-MS/MS Bioanalysis. Verplaetse R; Henion J Anal Chem; 2016 Jul; 88(13):6789-96. PubMed ID: 27270226 [TBL] [Abstract][Full Text] [Related]
10. Liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants and creatinine from a single dried blood spot using the Capitainer® qDBS device. Deprez S; Van Uytfanghe K; Stove CP Anal Chim Acta; 2023 Feb; 1242():340797. PubMed ID: 36657891 [TBL] [Abstract][Full Text] [Related]
11. Fluispotter, a novel automated and wearable device for accurate volume serial dried blood spot sampling. Adhikari KB; Rohde M; Velschow S; Feldt-Rasmussen U; Johannesen J; Johnsen AH Bioanalysis; 2020 May; 12(10):665-681. PubMed ID: 32489105 [No Abstract] [Full Text] [Related]
12. DBS-LC-MS/MS assay for caffeine: validation and neonatal application. Bruschettini M; Barco S; Romantsik O; Risso F; Gennai I; Chinea B; Ramenghi LA; Tripodi G; Cangemi G Bioanalysis; 2016 Sep; 8(18):1893-902. PubMed ID: 27532249 [TBL] [Abstract][Full Text] [Related]
13. Analysis of ochratoxin A in dried blood spots - Correlation between venous and finger-prick blood, the influence of hematocrit and spotted volume. Osteresch B; Cramer B; Humpf HU J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1020():158-64. PubMed ID: 27046696 [TBL] [Abstract][Full Text] [Related]
14. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. Vu DH; Koster RA; Alffenaar JW; Brouwers JR; Uges DR J Chromatogr B Analyt Technol Biomed Life Sci; 2011 May; 879(15-16):1063-70. PubMed ID: 21459055 [TBL] [Abstract][Full Text] [Related]
15. Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device. Beck O; Kenan Modén N; Seferaj S; Lenk G; Helander A Clin Chim Acta; 2018 Apr; 479():38-42. PubMed ID: 29309773 [TBL] [Abstract][Full Text] [Related]
16. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Koster RA; Alffenaar JW; Greijdanus B; Uges DR Talanta; 2013 Oct; 115():47-54. PubMed ID: 24054560 [TBL] [Abstract][Full Text] [Related]
17. Why dried blood spots are an ideal tool for CYP1A2 phenotyping. De Kesel PM; Lambert WE; Stove CP Clin Pharmacokinet; 2014 Aug; 53(8):763-71. PubMed ID: 24980692 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the effect of blood hematocrit and lipid content on the blood volume deposited by a disposable dried blood spot collection device. Spooner N; Olatunji A; Webbley K J Pharm Biomed Anal; 2018 Feb; 149():419-424. PubMed ID: 29154197 [TBL] [Abstract][Full Text] [Related]