BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30256111)

  • 1. Investigating the Influence of Arginine Dimethylation on Nucleosome Dynamics Using All-Atom Simulations and Kinetic Analysis.
    Li Z; Kono H
    J Phys Chem B; 2018 Oct; 122(42):9625-9634. PubMed ID: 30256111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.
    Kono H; Shirayama K; Arimura Y; Tachiwana H; Kurumizaka H
    PLoS One; 2015; 10(3):e0120635. PubMed ID: 25786215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.
    Shaytan AK; Armeev GA; Goncearenco A; Zhurkin VB; Landsman D; Panchenko AR
    J Mol Biol; 2016 Jan; 428(1):221-237. PubMed ID: 26699921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs.
    Sivolob A; Prunell A
    J Mol Biol; 2003 Aug; 331(5):1025-40. PubMed ID: 12927539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine residues involved in strong histone--DNA interactions to fold DNA into the nucleosome core particle.
    Zama M
    Nucleic Acids Symp Ser; 1991; (25):33-4. PubMed ID: 1842084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoserine inhibits neighboring arginine methylation in the RKS motif of histone H3.
    Leal JA; Estrada-Tobar ZM; Wade F; Mendiola AJP; Meza A; Mendoza M; Nerenberg PS; Zurita-Lopez CI
    Arch Biochem Biophys; 2021 Feb; 698():108716. PubMed ID: 33309545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulation of the effect of histone modification on nucleosome structure.
    Li W; Dou SX; Xie P; Wang PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051915. PubMed ID: 17677106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion.
    Fu I; Cai Y; Geacintov NE; Zhang Y; Broyde S
    Biochemistry; 2017 Apr; 56(14):1963-1973. PubMed ID: 28304160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the CENP-A and histone H3 structures in nucleosomes.
    Tachiwana H; Kagawa W; Kurumizaka H
    Nucleus; 2012; 3(1):6-11. PubMed ID: 22127263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-pair FRET experiments on nucleosome conformational dynamics.
    Buning R; van Noort J
    Biochimie; 2010 Dec; 92(12):1729-40. PubMed ID: 20800089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification.
    Öztürk MA; Cojocaru V; Wade RC
    Biophys J; 2018 May; 114(10):2363-2375. PubMed ID: 29759374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome.
    Morrison EA; Bowerman S; Sylvers KL; Wereszczynski J; Musselman CA
    Elife; 2018 Apr; 7():. PubMed ID: 29648537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of histone tails in the nucleosome: a computational study.
    Erler J; Zhang R; Petridis L; Cheng X; Smith JC; Langowski J
    Biophys J; 2014 Dec; 107(12):2911-2922. PubMed ID: 25517156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.
    Kim J; Lee J; Lee TH
    J Phys Chem B; 2015 Dec; 119(48):15001-5. PubMed ID: 26575591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres.
    Pruss D; Bartholomew B; Persinger J; Hayes J; Arents G; Moudrianakis EN; Wolffe AP
    Science; 1996 Oct; 274(5287):614-7. PubMed ID: 8849453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosome dynamics. Protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3-H4)2 tetramer-DNA particle.
    Alilat M; Sivolob A; Révet B; Prunell A
    J Mol Biol; 1999 Aug; 291(4):815-41. PubMed ID: 10452891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.