These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30256124)

  • 1. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics.
    Rameshwaram NR; Singh P; Ghosh S; Mukhopadhyay S
    Future Microbiol; 2018 Sep; 13():1301-1328. PubMed ID: 30256124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipolytic enzymes in Mycobacterium tuberculosis.
    Côtes K; Bakala N'goma JC; Dhouib R; Douchet I; Maurin D; Carrière F; Canaan S
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):741-9. PubMed ID: 18309478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system.
    Singh G; Singh G; Jadeja D; Kaur J
    Crit Rev Microbiol; 2010 Aug; 36(3):259-69. PubMed ID: 20500016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Lipolytic enzymes in
    Lin H; Xing J; Wang H; Wang S; Fang R; Li X; Li Z; Song N
    Front Microbiol; 2024; 15():1329715. PubMed ID: 38357346
    [No Abstract]   [Full Text] [Related]  

  • 5. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Wall Associated Factors of Mycobacterium tuberculosis as Major Virulence Determinants: Current Perspectives in Drugs Discovery and Design.
    Singh G; Kumar A; Maan P; Kaur J
    Curr Drug Targets; 2017 Nov; 18(16):1904-1918. PubMed ID: 28699515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research.
    Dedieu L; Serveau-Avesque C; Kremer L; Canaan S
    Biochimie; 2013 Jan; 95(1):66-73. PubMed ID: 22819994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.
    Jain M; Petzold CJ; Schelle MW; Leavell MD; Mougous JD; Bertozzi CR; Leary JA; Cox JS
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5133-8. PubMed ID: 17360366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential selective inhibitors against Rv0183 of Mycobacterium tuberculosis targeting host lipid metabolism.
    Saravanan P; Dubey VK; Patra S
    Chem Biol Drug Des; 2012 Jun; 79(6):1056-62. PubMed ID: 22405030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets.
    Barisch C; Soldati T
    Biochimie; 2017 Oct; 141():54-61. PubMed ID: 28587792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria.
    Chatterjee R; Chowdhury AR; Mukherjee D; Chakravortty D
    Virulence; 2021 Dec; 12(1):195-216. PubMed ID: 33356849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.
    Salaemae W; Booker GW; Polyak SW
    Microbiol Spectr; 2016 Apr; 4(2):. PubMed ID: 27227307
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Berney M; Berney-Meyer L
    Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions.
    Passemar C; Arbués A; Malaga W; Mercier I; Moreau F; Lepourry L; Neyrolles O; Guilhot C; Astarie-Dequeker C
    Cell Microbiol; 2014 Feb; 16(2):195-213. PubMed ID: 24028583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New strategies in fighting TB: targeting Mycobacterium tuberculosis-secreted phosphatases MptpA & MptpB.
    Silva AP; Tabernero L
    Future Med Chem; 2010 Aug; 2(8):1325-37. PubMed ID: 21426021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting essential cell wall lipase Rv3802c for potential therapeutics against tuberculosis.
    Saravanan P; Avinash H; Dubey VK; Patra S
    J Mol Graph Model; 2012 Sep; 38():235-42. PubMed ID: 23085165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis.
    Singh P; Rameshwaram NR; Ghosh S; Mukhopadhyay S
    Future Microbiol; 2018 May; 13():689-710. PubMed ID: 29771143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development.
    Wong D; Chao JD; Av-Gay Y
    Trends Microbiol; 2013 Feb; 21(2):100-9. PubMed ID: 23084287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms.
    Jayachandran R; Scherr N; Pieters J
    Expert Rev Anti Infect Ther; 2012 Sep; 10(9):1007-22. PubMed ID: 23106276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.