These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3025648)

  • 41. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum.
    Kohno K; Normington K; Sambrook J; Gething MJ; Mori K
    Mol Cell Biol; 1993 Feb; 13(2):877-90. PubMed ID: 8423809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG.
    West RW; Yocum RR; Ptashne M
    Mol Cell Biol; 1984 Nov; 4(11):2467-78. PubMed ID: 6392852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two related regulatory sequences are required for maximal induction of Saccharomyces cerevisiae his3 transcription.
    Struhl K; Hill DE
    Mol Cell Biol; 1987 Jan; 7(1):104-10. PubMed ID: 3031449
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae.
    Spevak W; Hartig A; Meindl P; Ruis H
    Mol Gen Genet; 1986 Apr; 203(1):73-8. PubMed ID: 2423850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional regulatory sequences of the housekeeping gene for human triosephosphate isomerase.
    Boyer TG; Krug JR; Maquat LE
    J Biol Chem; 1989 Mar; 264(9):5177-87. PubMed ID: 2925688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tc, an unusual promoter element required for constitutive transcription of the yeast HIS3 gene.
    Mahadevan S; Struhl K
    Mol Cell Biol; 1990 Sep; 10(9):4447-55. PubMed ID: 2201891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation.
    Kitada K; Yamaguchi E; Arisawa M
    Gene; 1995 Nov; 165(2):203-6. PubMed ID: 8522176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcription of the 5 S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region.
    Challice JM; Segall J
    J Biol Chem; 1989 Nov; 264(33):20060-7. PubMed ID: 2684967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein.
    Schroeder SC; Wang CK; Weil PA
    J Biol Chem; 1994 Nov; 269(45):28335-46. PubMed ID: 7961772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae.
    Johnston M; Davis RW
    Mol Cell Biol; 1984 Aug; 4(8):1440-8. PubMed ID: 6092912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription terminates near the poly(A) site in the CYC1 gene of the yeast Saccharomyces cerevisiae.
    Russo P; Sherman F
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8348-52. PubMed ID: 2554310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Yeast silencers create domains of nuclease-resistant chromatin in an SIR4-dependent manner.
    Reimer SK; Buchman AR
    Chromosoma; 1997 Aug; 106(3):136-48. PubMed ID: 9233987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The sn-1,2-diacylglycerol cholinephosphotransferase of Saccharomyces cerevisiae. Nucleotide sequence, transcriptional mapping, and gene product analysis of the CPT1 gene.
    Hjelmstad RH; Bell RM
    J Biol Chem; 1990 Jan; 265(3):1755-64. PubMed ID: 2153142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sticky-end polymerase chain reaction method for systematic gene disruption in Saccharomyces cerevisiae.
    Maftahi M; Gaillardin C; Nicaud JM
    Yeast; 1996 Jul; 12(9):859-68. PubMed ID: 8840503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of a yeast strain deleted for the TRP1 promoter and coding region that enhances the efficiency of the polymerase chain reaction-disruption method.
    Baudin-Baillieu A; Guillemet E; Cullin C; Lacroute F
    Yeast; 1997 Mar; 13(4):353-6. PubMed ID: 9133738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallothionein gene.
    Thiele DJ; Hamer DH
    Mol Cell Biol; 1986 Apr; 6(4):1158-63. PubMed ID: 3537699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection.
    Rudolph H; Hinnen A
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1340-4. PubMed ID: 2881299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physical mapping of the exuT and uxaC operators by use of exu plasmids and generation of deletion mutants in vitro.
    Mata-Gilsinger M; Ritzenthaler P
    J Bacteriol; 1983 Sep; 155(3):973-82. PubMed ID: 6309752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast expression vectors using RNA polymerase III promoters.
    Good PD; Engelke DR
    Gene; 1994 Dec; 151(1-2):209-14. PubMed ID: 7828876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple positive and negative elements involved in the regulation of expression of GSY1 in Saccharomyces cerevisiae.
    Unnikrishnan I; Miller S; Meinke M; LaPorte DC
    J Biol Chem; 2003 Jul; 278(29):26450-7. PubMed ID: 12697770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.