These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30256481)

  • 1. Hindered and constrained: limited potential for thermal adaptation in post-metamorphic and adult Rana temporaria along elevational gradients.
    Enriquez-Urzelai U; Palacio AS; Merino NM; Sacco M; Nicieza AG
    J Evol Biol; 2018 Dec; 31(12):1852-1862. PubMed ID: 30256481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U; Tingley R; Kearney MR; Sacco M; Palacio AS; Tejedo M; Nicieza AG
    J Anim Ecol; 2020 Jul; 89(7):1722-1734. PubMed ID: 32221971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural adaptations of Rana temporaria to cold climates.
    Ludwig G; Sinsch U; Pelster B
    J Therm Biol; 2015; 49-50():82-90. PubMed ID: 25774030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria.
    Enriquez-Urzelai U; Sacco M; Palacio AS; Pintanel P; Tejedo M; Nicieza AG
    Oecologia; 2019 Feb; 189(2):385-394. PubMed ID: 30694384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in UV sensitivity among common frog Rana temporaria populations along an altitudinal gradient.
    Marquis O; Miaud C
    Zoology (Jena); 2008; 111(4):309-17. PubMed ID: 18495447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria).
    Muir AP; Biek R; Thomas R; Mable BK
    Mol Ecol; 2014 Feb; 23(3):561-74. PubMed ID: 24330274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioural and physiological adaptations to low-temperature environments in the common frog, Rana temporaria.
    Muir AP; Biek R; Mable BK
    BMC Evol Biol; 2014 May; 14():110. PubMed ID: 24885261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.
    García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria.
    Ruthsatz K; Dausmann KH; Reinhardt S; Robinson T; Sabatino NM; Peck MA; Glos J
    J Comp Physiol B; 2020 May; 190(3):297-315. PubMed ID: 32144506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations.
    Merilä J; Laurila A; Lindgren B
    J Evol Biol; 2004 Sep; 17(5):1132-40. PubMed ID: 15312085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetic variation for thermal performance curves within and among natural populations of Drosophila serrata.
    Latimer CA; Wilson RS; Chenoweth SF
    J Evol Biol; 2011 May; 24(5):965-75. PubMed ID: 21306462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do evolutionary constraints on thermal performance manifest at different organizational scales?
    Phillips BL; Llewelyn J; Hatcher A; Macdonald S; Moritz C
    J Evol Biol; 2014 Dec; 27(12):2687-94. PubMed ID: 25403471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digest: Parallel rather than unique local adaptation along a steep elevation gradient.
    Arjona Y; Morente-López J
    Evolution; 2021 Apr; 75(4):972-974. PubMed ID: 33690886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia.
    Kleckova I; Klecka J
    PLoS One; 2016; 11(3):e0150393. PubMed ID: 27008409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria).
    Bonin A; Taberlet P; Miaud C; Pompanon F
    Mol Biol Evol; 2006 Apr; 23(4):773-83. PubMed ID: 16396915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using genetic variation to infer associations with climate in the common frog, Rana temporaria.
    Muir AP; Thomas R; Biek R; Mable BK
    Mol Ecol; 2013 Jul; 22(14):3737-51. PubMed ID: 23692266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.
    Lind MI; Johansson F
    J Evol Biol; 2011 Dec; 24(12):2696-704. PubMed ID: 21954876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.