These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30256504)

  • 1. Differential brain mechanisms for processing distracting information in task-relevant and -irrelevant dimensions in visual search.
    Wei P; Yu H; Müller HJ; Pollmann S; Zhou X
    Hum Brain Mapp; 2019 Jan; 40(1):110-124. PubMed ID: 30256504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
    Dombert PL; Kuhns A; Mengotti P; Fink GR; Vossel S
    Neuroimage; 2016 Nov; 142():553-564. PubMed ID: 27523448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional neuroanatomy of visual conjunction search: a parametric fMRI study.
    Müller NG; Donner TH; Bartelt OA; Brandt SA; Villringer A; Kleinschmidt A
    Neuroimage; 2003 Nov; 20(3):1578-90. PubMed ID: 14642469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Category-based attentional capture can be influenced by color- and shape-dimensions independently in the conjunction search task.
    Wu X; Wang X; Saab R; Jiang Y
    Psychophysiology; 2020 Apr; 57(4):e13526. PubMed ID: 31953842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural representation of targets and distractors during object individuation and identification.
    Jeong SK; Xu Y
    J Cogn Neurosci; 2013 Jan; 25(1):117-26. PubMed ID: 23198893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generality of parietal involvement in visual attention.
    Wojciulik E; Kanwisher N
    Neuron; 1999 Aug; 23(4):747-64. PubMed ID: 10482241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Neural Consequences of Attentional Prioritization of Internal Representations in Visual Working Memory.
    Sahan MI; Sheldon AD; Postle BR
    J Cogn Neurosci; 2020 May; 32(5):917-944. PubMed ID: 31851592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.
    Potts GF; Wood SM; Kothmann D; Martin LE
    Brain Res; 2008 Oct; 1236():126-39. PubMed ID: 18723003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention.
    Kincade JM; Abrams RA; Astafiev SV; Shulman GL; Corbetta M
    J Neurosci; 2005 May; 25(18):4593-604. PubMed ID: 15872107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritizing new over old: an fMRI study of the preview search task.
    Olivers CN; Smith S; Matthews P; Humphreys GW
    Hum Brain Mapp; 2005 Jan; 24(1):69-78. PubMed ID: 15390216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors.
    Allon AS; Luria R
    Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feature and conjunction searches of equal difficulty engage only partially overlapping frontoparietal networks.
    Donner TH; Kettermann A; Diesch E; Ostendorf F; Villringer A; Brandt SA
    Neuroimage; 2002 Jan; 15(1):16-25. PubMed ID: 11771970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct neural substrates underlying target facilitation and distractor suppression: A combined voxel-based morphometry and resting-state functional connectivity study.
    Xie K; Jin Z; Ni X; Zhang J; Li L
    Neuroimage; 2020 Nov; 221():117149. PubMed ID: 32659355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.