BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30256518)

  • 1. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds.
    Schulz A; Gepp MM; Stracke F; von Briesen H; Neubauer JC; Zimmermann H
    J Biomed Mater Res A; 2019 Jan; 107(1):114-121. PubMed ID: 30256518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.
    Bidarra SJ; Barrias CC
    Methods Mol Biol; 2019; 2002():165-180. PubMed ID: 30244438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate scaffolds for mesenchymal stem cell cardiac therapy: influence of alginate composition.
    Ceccaldi C; Fullana SG; Alfarano C; Lairez O; Calise D; Cussac D; Parini A; Sallerin B
    Cell Transplant; 2012; 21(9):1969-84. PubMed ID: 22776769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture.
    Majidi SS; Slemming-Adamsen P; Hanif M; Zhang Z; Wang Z; Chen M
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1648-1654. PubMed ID: 29981331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering.
    Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS
    J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel hybrid bioactive hydrogel for future clinical applications.
    Francis L; Greco KV; Boccaccini AR; Roether JJ; English NR; Huang H; Ploeg R; Ansari T
    J Biomater Appl; 2018 Sep; 33(3):447-465. PubMed ID: 30223736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo study of alginate hydrogel conglutinating cells to polycaprolactone vascular scaffolds fabricated by electrospinning.
    Sun KH; Liu Z; Liu CJ; Yu T; Zhou M; Liu C; Ran F; Pan LJ; Zhang H
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2443-2454. PubMed ID: 27654960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.
    Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M
    Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments.
    Fonseca KB; Bidarra SJ; Oliveira MJ; Granja PL; Barrias CC
    Acta Biomater; 2011 Apr; 7(4):1674-82. PubMed ID: 21193068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrically customizable alginate hydrogel nanofibers for cell culture platforms.
    Fujita S; Wakuda Y; Matsumura M; Suye SI
    J Mater Chem B; 2019 Nov; 7(42):6556-6563. PubMed ID: 31588949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system.
    Choe G; Park J; Jo H; Kim YS; Ahn Y; Lee JY
    Int J Biol Macromol; 2019 Feb; 123():512-520. PubMed ID: 30445088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels.
    Jeon O; Alt DS; Ahmed SM; Alsberg E
    Biomaterials; 2012 May; 33(13):3503-14. PubMed ID: 22336294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of tyramine-based hyaluronan hydrogels.
    Darr A; Calabro A
    J Mater Sci Mater Med; 2009 Jan; 20(1):33-44. PubMed ID: 18668211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering.
    Montalbano G; Toumpaniari S; Popov A; Duan P; Chen J; Dalgarno K; Scott WE; Ferreira AM
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():236-246. PubMed ID: 30033251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering.
    Roshanbinfar K; Mohammadi Z; Sheikh-Mahdi Mesgar A; Dehghan MM; Oommen OP; Hilborn J; Engel FB
    Biomater Sci; 2019 Sep; 7(9):3906-3917. PubMed ID: 31322163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.