These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30256607)

  • 1. Biomimetic Porifera Skeletal Structure of Lead-Free Piezocomposite Energy Harvesters.
    Zhang Y; Sun H; Jeong CK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35539-35546. PubMed ID: 30256607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.
    Gupta MK; Kim SW; Kumar B
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems.
    Falk M; Shleev S
    Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor.
    Song L; Huang Z; Guo S; Li Y; Wang Q
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37252-37261. PubMed ID: 34318675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.
    Dagdeviren C; Li Z; Wang ZL
    Annu Rev Biomed Eng; 2017 Jun; 19():85-108. PubMed ID: 28633564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.
    Lekha CS; Kumar AS; Vivek S; Rasi UP; Saravanan KV; Nandakumar K; Nair SS
    Nanotechnology; 2017 Feb; 28(5):055402. PubMed ID: 28008890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative Poisson's ratio polyethylene matrix and 0.5Ba(Zr
    Karmakar S; Kiran R; Bowen C; Vaish R; Chauhan VS; Elqahtani ZM; Ahmed SB; Al-Buriahi MS; Kumar A; Sung TH
    Sci Rep; 2022 Dec; 12(1):22610. PubMed ID: 36585424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible piezoelectric energy harvester with an ultrahigh transduction coefficient by the interconnected skeleton design strategy.
    Hao Y; Hou Y; Fu J; Yu X; Gao X; Zheng M; Zhu M
    Nanoscale; 2020 Jun; 12(24):13001-13009. PubMed ID: 32530013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Energy Harvester on a Pacemaker Lead Using Multibeam Piezoelectric Composite Thin Films.
    Xu Z; Jin C; Cabe A; Escobedo D; Hao N; Trase I; Closson AB; Dong L; Nie Y; Elliott J; Feldman MD; Chen Z; Zhang JXJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34170-34179. PubMed ID: 32543828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester.
    Jeong CK; Baek C; Kingon AI; Park KI; Kim SH
    Small; 2018 May; 14(19):e1704022. PubMed ID: 29655226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The benefits of combining 1D and 3D nanofillers in a piezocomposite nanogenerator for biomechanical energy harvesting.
    Hanani Z; Izanzar I; Merselmiz S; Amjoud M; Mezzane D; Ghanbaja J; Saadoune I; Lahcini M; Spreitzer M; Vengust D; El Marssi M; Kutnjak Z; Luk'yanchuk IA; Gouné M
    Nanoscale Adv; 2022 Oct; 4(21):4658-4668. PubMed ID: 36341296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significantly Enhanced Energy-Harvesting Performance and Superior Fatigue-Resistant Behavior in [001]
    Liu Y; Chang Y; Sun E; Li F; Zhang S; Yang B; Sun Y; Wu J; Cao W
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31488-31497. PubMed ID: 30136566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Multistack-Printed, Self-Powered Flexible Pressure Sensor Arrays: Piezoelectric Composites with Chemically Anchored Heterogeneous Interfaces.
    Jeong SI; Lee EJ; Hong GR; Jo Y; Jung SM; Lee SY; Choi Y; Jeong S
    ACS Omega; 2020 Feb; 5(4):1956-1965. PubMed ID: 32039332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Step Regulation Strategy Improving Stress Transfer and Poling Efficiency Boosts Piezoelectric Performance of 0-3 Piezocomposites.
    Wang C; Gao X; Zheng M; Zhu M; Hou Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41735-41743. PubMed ID: 34459186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications.
    Sun J; Guo H; Ribera J; Wu C; Tu K; Binelli M; Panzarasa G; Schwarze FWMR; Wang ZL; Burgert I
    ACS Nano; 2020 Nov; 14(11):14665-14674. PubMed ID: 32936611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.