These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3025668)

  • 41. Cleavage and polyadenylation of messenger RNA precursors in vitro occurs within large and specific 3' processing complexes.
    Humphrey T; Christofori G; Lucijanic V; Keller W
    EMBO J; 1987 Dec; 6(13):4159-68. PubMed ID: 3127203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of adenovirus type 2 L1 RNA 3'-end formation in vivo and in vitro.
    Hales KH; Birk JM; Imperiale MJ
    J Virol; 1988 Apr; 62(4):1464-8. PubMed ID: 2894474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The secondary structure of the adenovirus-2 L4 polyadenylation domain: evidence for a hairpin structure exposing the AAUAAA signal in its loop.
    Sittler A; Gallinaro H; Jacob M
    J Mol Biol; 1995 May; 248(3):525-40. PubMed ID: 7752222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Poly(A) polymerase purified from HeLa cell nuclear extract is required for both cleavage and polyadenylation of pre-mRNA in vitro.
    Christofori G; Keller W
    Mol Cell Biol; 1989 Jan; 9(1):193-203. PubMed ID: 2538718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyadenylic acid addition sites in the adenovirus type 2 major late transcription unit.
    Le Moullec JM; Akusjärvi G; Stålhandske P; Pettersson U; Chambraud B; Gilardi P; Nasri M; Perricaudet M
    J Virol; 1983 Oct; 48(1):127-34. PubMed ID: 6136617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3'-end formation and for assembly of a precleavage complex in vitro.
    Zarkower D; Wickens M
    J Biol Chem; 1988 Apr; 263(12):5780-8. PubMed ID: 2833517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The site at which late mRNAs are polyadenylated is altered in SV40 mutant dl882.
    Fitzgerald M; Shenk T
    Ann N Y Acad Sci; 1980; 354():53-9. PubMed ID: 6164330
    [No Abstract]   [Full Text] [Related]  

  • 48. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA.
    Chen J; Moore C
    Mol Cell Biol; 1992 Aug; 12(8):3470-81. PubMed ID: 1352851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupled transcription-polyadenylation in a cell-free system.
    Mifflin RC; Kellems RE
    J Biol Chem; 1991 Oct; 266(29):19593-8. PubMed ID: 1918066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A history of poly A sequences: from formation to factors to function.
    Edmonds M
    Prog Nucleic Acid Res Mol Biol; 2002; 71():285-389. PubMed ID: 12102557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The sequence 5'-AAUAAA-3'forms parts of the recognition site for polyadenylation of late SV40 mRNAs.
    Fitzgerald M; Shenk T
    Cell; 1981 Apr; 24(1):251-60. PubMed ID: 6113054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation.
    Cole CN; Stacy TP
    Mol Cell Biol; 1985 Aug; 5(8):2104-13. PubMed ID: 3018551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal.
    Lutz CS; Alwine JC
    Genes Dev; 1994 Mar; 8(5):576-86. PubMed ID: 7926751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal.
    Wilusz J; Shenk T
    Mol Cell Biol; 1990 Dec; 10(12):6397-407. PubMed ID: 1701018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembly of the cleavage and polyadenylation apparatus requires about 10 seconds in vivo and is faster for strong than for weak poly(A) sites.
    Chao LC; Jamil A; Kim SJ; Huang L; Martinson HG
    Mol Cell Biol; 1999 Aug; 19(8):5588-600. PubMed ID: 10409748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of mRNA 3' end formation by modification interference: the only modifications which prevent processing lie in AAUAAA and the poly(A) site.
    Conway L; Wickens M
    EMBO J; 1987 Dec; 6(13):4177-84. PubMed ID: 3443104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. UV cross-linking of polypeptides associated with 3'-terminal exons.
    Stolow DT; Berget SM
    Mol Cell Biol; 1990 Nov; 10(11):5937-44. PubMed ID: 1700276
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Requirement of A-A-U-A-A-A and adjacent downstream sequences for SV40 early polyadenylation.
    Kessler MM; Beckendorf RC; Westhafer MA; Nordstrom JL
    Nucleic Acids Res; 1986 Jun; 14(12):4939-52. PubMed ID: 3014439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of polyadenylation in nucleocytoplasmic transport of mRNA.
    Huang Y; Carmichael GG
    Mol Cell Biol; 1996 Apr; 16(4):1534-42. PubMed ID: 8657127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.