These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 30256781)

  • 1. Correction: LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.
    Kwon SK; Sando R; Lewis TL; Hirabayashi Y; Maximov A; Polleux F
    PLoS Biol; 2018 Sep; 16(9):e3000040. PubMed ID: 30256781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy.
    Di Biase S; Shim HS; Kim KH; Vinciguerra M; Rappa F; Wei M; Brandhorst S; Cappello F; Mirzaei H; Lee C; Longo VD
    PLoS Biol; 2017 May; 15(5):e1002603. PubMed ID: 28459830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential function of alpha-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse.
    Hinds HL; Goussakov I; Nakazawa K; Tonegawa S; Bolshakov VY
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4275-80. PubMed ID: 12629219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release.
    Schwartz NE; Alford S
    J Neurophysiol; 2000 Jul; 84(1):415-27. PubMed ID: 10899215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal GABA regulates GABA(B)R conformation and release probability at single hippocampal synapses.
    Laviv T; Riven I; Dolev I; Vertkin I; Balana B; Slesinger PA; Slutsky I
    Neuron; 2010 Jul; 67(2):253-67. PubMed ID: 20670833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila.
    PLOS Biology Staff
    PLoS Biol; 2022 Sep; 20(9):e3001818. PubMed ID: 36129884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.
    Clarke SG; Scarnati MS; Paradiso KG
    J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute dissociation of lamprey reticulospinal axons to enable recording from the release face membrane of individual functional presynaptic terminals.
    Ramachandran S; Alford S
    J Vis Exp; 2014 Oct; (92):e51925. PubMed ID: 25350679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use-dependent control of presynaptic calcium signalling at central synapses.
    Scott R
    J Anat; 2007 Jun; 210(6):642-50. PubMed ID: 17523936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-dependent regulation of presynaptic NMDARs enhances neurotransmitter release at neocortical synapses.
    Urban-Ciecko J; Wen JA; Parekh PK; Barth AL
    Learn Mem; 2014 Jan; 22(1):47-55. PubMed ID: 25512577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ca(2+) in the synchronization of transmitter release at calyceal synapses in the auditory system of rat.
    Chuhma N; Ohmori H
    J Neurophysiol; 2002 Jan; 87(1):222-8. PubMed ID: 11784744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target cell-dependent normalization of transmitter release at neocortical synapses.
    Koester HJ; Johnston D
    Science; 2005 May; 308(5723):863-6. PubMed ID: 15774725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses.
    Kimura F; Otsu Y; Tsumoto T
    J Neurophysiol; 1997 May; 77(5):2805-15. PubMed ID: 9163394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex.
    Ali AB; Nelson C
    Cereb Cortex; 2006 Mar; 16(3):386-93. PubMed ID: 15917483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction: Lipoprotein Receptor LRP1 Regulates Leptin Signaling and Energy Homeostasis in the Adult Central Nervous System.
    Liu Q; Zhang J; Zerbinatti C; Zhan Y; Kolber BJ; Herz J; Muglia LJ; Bu G
    PLoS Biol; 2019 Jun; 17(6):e3000310. PubMed ID: 31163031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation controls the fast rebound from depression at excitatory hippocampal synapses.
    Garcia-Perez E; Wesseling JF
    J Neurophysiol; 2008 Apr; 99(4):1770-86. PubMed ID: 18199812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic mitochondria and the temporal pattern of neurotransmitter release.
    Brodin L; Bakeeva L; Shupliakov O
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):365-72. PubMed ID: 10212485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantal analysis of presynaptic inhibition, low [Ca2+]0, and high pressure interactions at crustacean excitatory synapses.
    Golan H; Moore HJ; Grossman Y
    Synapse; 1994 Dec; 18(4):328-36. PubMed ID: 7886625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats.
    Sun HY; Lyons SA; Dobrunz LE
    J Physiol; 2005 Nov; 568(Pt 3):815-40. PubMed ID: 16109728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.