These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30256851)

  • 1. Bimodal ankle-foot prosthesis for enhanced standing stability.
    Koehler-McNicholas SR; Savvas Slater BC; Koester K; Nickel EA; Ferguson JE; Hansen AH
    PLoS One; 2018; 13(9):e0204512. PubMed ID: 30256851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a flat prosthetic foot rocker section on balance and mobility.
    Hansen A; Nickel E; Medvec J; Brielmaier S; Pike A; Weber M
    J Rehabil Res Dev; 2014; 51(1):137-48. PubMed ID: 24805900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First results concerning the safety, walking, and satisfaction with an innovative, microprocessor-controlled four-axes prosthetic foot.
    Hahn A; Sreckovic I; Reiter S; Mileusnic M
    Prosthet Orthot Int; 2018 Jun; 42(3):350-356. PubMed ID: 29400252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microprocessor prosthetic ankles: comparative biomechanical evaluation of people with transtibial traumatic amputation during standing on level ground and slope.
    Thomas-Pohl M; Villa C; Davot J; Bonnet X; Facione J; Lapeyre E; Bascou J; Pillet H
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):17-26. PubMed ID: 31535903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective rocker shapes used by able-bodied persons for walking and fore-aft swaying: implications for design of ankle-foot prostheses.
    Hansen AH; Wang CC
    Gait Posture; 2010 Jun; 32(2):181-4. PubMed ID: 20471833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?
    Rusaw D; Hagberg K; Nolan L; Ramstrand N
    J Rehabil Res Dev; 2012; 49(8):1239-54. PubMed ID: 23341316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees.
    Bai X; Ewins D; Crocombe AD; Xu W
    PLoS One; 2018; 13(10):e0205093. PubMed ID: 30289921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation.
    Major MJ; Twiste M; Kenney LP; Howard D
    J Rehabil Res Dev; 2016; 53(6):839-852. PubMed ID: 28273321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps.
    Pickle NT; Silverman AK; Wilken JM; Fey NP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1609-1614. PubMed ID: 28814050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a microprocessor-controlled ankle-foot unit on energy expenditure, quality of life, and postural stability in persons with transtibial amputation: An unblinded, randomized, controlled, cross-over study.
    Colas-Ribas C; Martinet N; Audat G; Bruneau A; Paysant J; Abraham P
    Prosthet Orthot Int; 2022 Dec; 46(6):541-548. PubMed ID: 36515900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking.
    Koehler-McNicholas SR; Nickel EA; Barrons K; Blaharski KE; Dellamano CA; Ray SF; Schnall BL; Hendershot BD; Hansen AH
    PLoS One; 2018; 13(9):e0202884. PubMed ID: 30208040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations from the prosthetic and intact limb during standing on a sway-referenced support surface for transtibial prosthesis users.
    Rusaw DF
    Disabil Rehabil Assist Technol; 2019 Oct; 14(7):682-691. PubMed ID: 30409065
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of Upper Limb Loss or Absence and Prosthesis Use on Postural Control of Standing Balance.
    Major MJ; Stine R; Shirvaikar T; Gard SA
    Am J Phys Med Rehabil; 2020 May; 99(5):366-371. PubMed ID: 31688013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking.
    Koehler-McNicholas SR; Nickel EA; Medvec J; Barrons K; Mion S; Hansen AH
    PLoS One; 2017; 12(3):e0173423. PubMed ID: 28278172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side.
    Nederhand MJ; Van Asseldonk EH; van der Kooij H; Rietman HS
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):40-5. PubMed ID: 21889241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.
    Bai X; Ewins D; Crocombe AD; Xu W
    PLoS One; 2017; 12(7):e0180836. PubMed ID: 28704428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.