These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30257214)

  • 21. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing.
    Zhao J; Sun Y; Huang Y; Song F; Huang Z; Bao Y; Zuo J; Saffen D; Shao Z; Liu W; Wang Y
    Sci Rep; 2017 Jan; 7():40488. PubMed ID: 28091594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rbm10 regulates inflammation development via alternative splicing of Dnmt3b.
    Atsumi T; Suzuki H; Jiang JJ; Okuyama Y; Nakagawa I; Ota M; Tanaka Y; Ohki T; Katsunuma K; Nakajima K; Hasegawa Y; Ohara O; Ogura H; Arima Y; Kamimura D; Murakami M
    Int Immunol; 2017 Dec; 29(12):581-591. PubMed ID: 29309623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional insight into a neurodevelopmental disorder caused by missense variants in an RNA-binding protein, RBM10.
    Imagawa E; Moreta L; Misra VK; Newman C; Konuma T; Oishi K
    J Hum Genet; 2023 Sep; 68(9):643-648. PubMed ID: 37268768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway.
    Hong HQ; Lu J; Fang XL; Zhang YH; Cai Y; Yuan J; Liu PQ; Ye JT
    Acta Pharmacol Sin; 2018 Feb; 39(2):184-194. PubMed ID: 28816235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Splicing Site Recognition by Synergy of Three Domains in Splicing Factor RBM10.
    Serrano P; Hammond JA; Geralt M; Wüthrich K
    Biochemistry; 2018 Mar; 57(10):1563-1567. PubMed ID: 29450990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation.
    Tomita H; Nazmy M; Kajimoto K; Yehia G; Molina CA; Sadoshima J
    Circ Res; 2003 Jul; 93(1):12-22. PubMed ID: 12791704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy.
    Ames EG; Lawson MJ; Mackey AJ; Holmes JW
    J Mol Cell Cardiol; 2013 Sep; 62():99-107. PubMed ID: 23688780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiomyocyte specific overexpression of a 37 amino acid domain of regulator of G protein signalling 2 inhibits cardiac hypertrophy and improves function in response to pressure overload in mice.
    Lee KN; Lu X; Nguyen C; Feng Q; Chidiac P
    J Mol Cell Cardiol; 2017 Jul; 108():194-202. PubMed ID: 28641980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a.
    Wei L; Yuan M; Zhou R; Bai Q; Zhang W; Zhang M; Huang Y; Shi L
    J Cardiovasc Pharmacol; 2015 Apr; 65(4):357-63. PubMed ID: 25850725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MG53, A Novel Regulator of KChIP2 and I
    Liu W; Wang G; Zhang C; Ding W; Cheng W; Luo Y; Wei C; Liu J
    Circulation; 2019 Apr; 139(18):2142-2156. PubMed ID: 30760025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101.
    Xiao L; Gu Y; Sun Y; Chen J; Wang X; Zhang Y; Gao L; Li L
    J Cell Physiol; 2019 Aug; 234(8):13680-13692. PubMed ID: 30605239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure.
    Gesmundo I; Miragoli M; Carullo P; Trovato L; Larcher V; Di Pasquale E; Brancaccio M; Mazzola M; Villanova T; Sorge M; Taliano M; Gallo MP; Alloatti G; Penna C; Hare JM; Ghigo E; Schally AV; Condorelli G; Granata R
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):12033-12038. PubMed ID: 29078377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RBM10: Structure, functions, and associated diseases.
    Inoue A
    Gene; 2021 May; 783():145463. PubMed ID: 33515724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.
    Huang ZP; Chen J; Seok HY; Zhang Z; Kataoka M; Hu X; Wang DZ
    Circ Res; 2013 Apr; 112(9):1234-43. PubMed ID: 23524588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RBM10 regulates centriole duplication in HepG2 cells by ectopically assembling PLK4-STIL complexes in the nucleus.
    Kunimoto H; Inoue A; Kojima H; Yang J; Zhao H; Tsuruta D; Nakajima K
    Genes Cells; 2020 Feb; 25(2):100-110. PubMed ID: 31820547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy.
    Gao L; Huang K; Jiang DS; Liu X; Huang D; Li H; Zhang XD; Huang K
    Hypertension; 2015 Apr; 65(4):871-81. PubMed ID: 25646292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MiR-208a-3p aggravates autophagy through the PDCD4-ATG5 pathway in Ang II-induced H9c2 cardiomyoblasts.
    Wang L; Ye N; Lian X; Peng F; Zhang H; Gong H
    Biomed Pharmacother; 2018 Feb; 98():1-8. PubMed ID: 29241069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer.
    Dou XQ; Chen XJ; Zhou Q; Wen MX; Zhang SZ; Zhang SQ
    Kaohsiung J Med Sci; 2020 Mar; 36(3):171-177. PubMed ID: 31894898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression.
    Wang C; Wang S; Zhao P; Wang X; Wang J; Wang Y; Song L; Zou Y; Hui R
    J Cell Biochem; 2012 Jun; 113(6):2040-6. PubMed ID: 22275134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload.
    Calamaras TD; Baumgartner RA; Aronovitz MJ; McLaughlin AL; Tam K; Richards DA; Cooper CW; Li N; Baur WE; Qiao X; Wang GR; Davis RJ; Kapur NK; Karas RH; Blanton RM
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H145-H159. PubMed ID: 30362822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.