BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30257487)

  • 1. C-Type Lectin-20 Interacts with ALP1 Receptor to Reduce Cry Toxicity in
    Batool K; Alam I; Zhao G; Wang J; Xu J; Yu X; Huang E; Guan X; Zhang L
    Toxins (Basel); 2018 Sep; 10(10):. PubMed ID: 30257487
    [No Abstract]   [Full Text] [Related]  

  • 2. CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in
    Batool K; Alam I; Jin L; Xu J; Wu C; Wang J; Huang E; Guan X; Yu XQ; Zhang L
    J Agric Food Chem; 2019 Aug; 67(32):8896-8904. PubMed ID: 31339308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aedes aegypti Galectin Competes with Cry11Aa for Binding to ALP1 To Modulate Cry Toxicity.
    Zhang LL; Hu XH; Wu SQ; Batool K; Chowdhury M; Lin Y; Zhang J; Gill SS; Guan X; Yu XQ
    J Agric Food Chem; 2018 Dec; 66(51):13435-13443. PubMed ID: 30556692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan.
    Chen J; Aimanova K; Gill SS
    Peptides; 2017 Dec; 98():78-85. PubMed ID: 28587836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins.
    Jiménez AI; Reyes EZ; Cancino-Rodezno A; Bedoya-Pérez LP; Caballero-Flores GG; Muriel-Millan LF; Likitvivatanavong S; Gill SS; Bravo A; Soberón M
    Insect Biochem Mol Biol; 2012 Sep; 42(9):683-9. PubMed ID: 22728570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Lectin in the Response of
    Alam I; Batool K; Idris AL; Tan W; Guan X; Zhang L
    Front Immunol; 2022; 13():898198. PubMed ID: 35634312
    [No Abstract]   [Full Text] [Related]  

  • 7. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti.
    Lee SB; Aimanova KG; Gill SS
    Insect Biochem Mol Biol; 2014 Nov; 54():112-21. PubMed ID: 25242559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti.
    Fernandez LE; Martinez-Anaya C; Lira E; Chen J; Evans A; Hernández-Martínez S; Lanz-Mendoza H; Bravo A; Gill SS; Soberón M
    Biochemistry; 2009 Sep; 48(37):8899-907. PubMed ID: 19697959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis.
    Chen J; Aimanova KG; Fernandez LE; Bravo A; Soberon M; Gill SS
    Biochem J; 2009 Nov; 424(2):191-200. PubMed ID: 19732034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.
    Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A
    BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of UPR pathway in defense response of Aedes aegypti against Cry11Aa toxin from Bacillus thuringiensis.
    Bedoya-Pérez LP; Cancino-Rodezno A; Flores-Escobar B; Soberón M; Bravo A
    Int J Mol Sci; 2013 Apr; 14(4):8467-78. PubMed ID: 23594997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of Aedes aegypti galectin-6 in modulation of Cry11Aa toxicity.
    Hu X; Chen H; Xu J; Zhao G; Huang X; Liu J; Batool K; Wu C; Wu S; Huang E; Wu J; Chowhury M; Zhang J; Guan X; Yu XQ; Zhang L
    Pestic Biochem Physiol; 2020 Jan; 162():96-104. PubMed ID: 31836060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aedes aegypti Mos20 cells internalizes cry toxins by endocytosis, and actin has a role in the defense against Cry11Aa toxin.
    Vega-Cabrera A; Cancino-Rodezno A; Porta H; Pardo-Lopez L
    Toxins (Basel); 2014 Jan; 6(2):464-87. PubMed ID: 24476709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti.
    Pacheco S; Gallegos AS; Peláez-Aguilar ÁE; Sánchez J; Gómez I; Soberón M; Bravo A
    PLoS Negl Trop Dis; 2024 Jun; 18(6):e0012256. PubMed ID: 38870209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae.
    Fernandez LE; Aimanova KG; Gill SS; Bravo A; Soberón M
    Biochem J; 2006 Feb; 394(Pt 1):77-84. PubMed ID: 16255715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor.
    Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K
    Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.
    Lee SB; Chen J; Aimanova KG; Gill SS
    Peptides; 2015 Jun; 68():140-147. PubMed ID: 25064814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cry11Aa Interacts with the ATP-Binding Protein from Culex quinquefasciatus To Improve the Toxicity.
    Zhang L; Zhao G; Hu X; Liu J; Li M; Batool K; Chen M; Wang J; Xu J; Huang T; Pan X; Xu L; Yu XQ; Guan X
    J Agric Food Chem; 2017 Dec; 65(50):10884-10890. PubMed ID: 29215274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti.
    López-Molina S; do Nascimento NA; Silva-Filha MHNL; Guerrero A; Sánchez J; Pacheco S; Gill SS; Soberón M; Bravo A
    PLoS Pathog; 2021 Jan; 17(1):e1009199. PubMed ID: 33465145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti.
    Stalinski R; Laporte F; Tetreau G; Després L
    Infect Genet Evol; 2016 Oct; 44():218-227. PubMed ID: 27418233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.