These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30257498)
1. An Aptamer-Based Biosensor for Direct, Label-Free Detection of Melamine in Raw Milk. Kaneko N; Horii K; Akitomi J; Kato S; Shiratori I; Waga I Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257498 [TBL] [Abstract][Full Text] [Related]
2. Portable Detection of Melamine in Milk Using a Personal Glucose Meter Based on an in Vitro Selected Structure-Switching Aptamer. Gu C; Lan T; Shi H; Lu Y Anal Chem; 2015 Aug; 87(15):7676-82. PubMed ID: 26200202 [TBL] [Abstract][Full Text] [Related]
3. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096 [TBL] [Abstract][Full Text] [Related]
4. Determination of melamine and melamine-Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor. Mu WY; Huang PZ; Chen QY; Wang W Food Chem; 2020 May; 311():125889. PubMed ID: 31767483 [TBL] [Abstract][Full Text] [Related]
5. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
6. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Huang H; Li L; Zhou G; Liu Z; Ma Q; Feng Y; Zeng G; Tinnefeld P; He Z Talanta; 2011 Aug; 85(2):1013-9. PubMed ID: 21726732 [TBL] [Abstract][Full Text] [Related]
7. Monitoring the adulteration of milk with melamine: a visualised sensor array approach. Yang L; Huo D; Jiang Y; Hou C; Zhang S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(5):786-95. PubMed ID: 23768006 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric determination of melamine in milk using unmodified silver nanoparticles. Kumar N; Kumar H; Mann B; Seth R Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965 [TBL] [Abstract][Full Text] [Related]
9. Visual detection of melamine in milk products by label-free gold nanoparticles. Guo L; Zhong J; Wu J; Fu F; Chen G; Zheng X; Lin S Talanta; 2010 Oct; 82(5):1654-8. PubMed ID: 20875559 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence, turn-on detection of melamine based on its dual functions as fluorescence enhancer of DNA-AgNCs and Hg(II)-scavenger. Jeong S; Kwon WY; Hwang SH; Shin J; Kim Y; Lee M; Park KS Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):621-625. PubMed ID: 30873874 [TBL] [Abstract][Full Text] [Related]
11. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Zhang M; Cao X; Li H; Guan F; Guo J; Shen F; Luo Y; Sun C; Zhang L Food Chem; 2012 Dec; 135(3):1894-900. PubMed ID: 22953938 [TBL] [Abstract][Full Text] [Related]
12. Preparation of monoclonal antibody for melamine and development of an indirect competitive ELISA for melamine detection in raw milk, milk powder, and animal feeds. Yin W; Liu J; Zhang T; Li W; Liu W; Meng M; He F; Wan Y; Feng C; Wang S; Lu X; Xi R J Agric Food Chem; 2010 Jul; 58(14):8152-7. PubMed ID: 20593820 [TBL] [Abstract][Full Text] [Related]
13. Simple and Label-Free Fluorescent Detection of Melamine Based on Melamine⁻Thymine Recognition. Yang H; Wang J; Wu Q; Wang Y; Li L; Ding B Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200586 [TBL] [Abstract][Full Text] [Related]
14. A Fluorescence Resonance Energy Transfer Biosensor Based on Graphene Quantum Dots and Protoporphyrin IX for the Detection of Melamine. Xue G; Zhiying M; Xiuying L; Lijun T; Jianrong L J Fluoresc; 2020 Dec; 30(6):1463-1468. PubMed ID: 32918651 [TBL] [Abstract][Full Text] [Related]
15. Development of an optical biosensor based immunoassay to screen infant formula milk samples for adulteration with melamine. Fodey TL; Thompson CS; Traynor IM; Haughey SA; Kennedy DG; Crooks SR Anal Chem; 2011 Jun; 83(12):5012-6. PubMed ID: 21557539 [TBL] [Abstract][Full Text] [Related]
16. An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Wu Q; Long Q; Li H; Zhang Y; Yao S Talanta; 2015 May; 136():47-53. PubMed ID: 25702984 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid. Alam MF; Laskar AA; Ahmed S; Shaida MA; Younus H Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():17-22. PubMed ID: 28432916 [TBL] [Abstract][Full Text] [Related]
18. "Aptamer-locker" DNA coupling with CRISPR/Cas12a-guided biosensing for high-efficiency melamine analysis. Qiao B; Xu J; Yin W; Xin W; Ma L; Qiao J; Liu Y Biosens Bioelectron; 2021 Jul; 183():113233. PubMed ID: 33848728 [TBL] [Abstract][Full Text] [Related]
19. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis. Zhang Y; Chen L; Zhang C; Liu S; Zhu H; Wang Y Talanta; 2016 Apr; 150():375-87. PubMed ID: 26838421 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Xu S; Lu H Biosens Bioelectron; 2015 Nov; 73():160-166. PubMed ID: 26057736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]