These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 30257738)

  • 21. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Approach to Nitrones through Cascade Reaction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis.
    Lin CW; Hong BC; Chang WC; Lee GH
    Org Lett; 2015 May; 17(10):2314-7. PubMed ID: 25895096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visible-Light-Mediated Alkenylation, Allylation, and Cyanation of Potassium Alkyltrifluoroborates with Organic Photoredox Catalysts.
    Heitz DR; Rizwan K; Molander GA
    J Org Chem; 2016 Aug; 81(16):7308-13. PubMed ID: 27336284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible-Light-Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis.
    Honeker R; Garza-Sanchez RA; Hopkinson MN; Glorius F
    Chemistry; 2016 Mar; 22(13):4395-9. PubMed ID: 26880666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic selective synthesis.
    Mahatthananchai J; Dumas AM; Bode JW
    Angew Chem Int Ed Engl; 2012 Oct; 51(44):10954-90. PubMed ID: 23011639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excited-State Copper Catalysis for the Synthesis of Heterocycles.
    Banerjee A; Sarkar S; Shah JA; Frederiks NC; Bazan-Bergamino EA; Johnson CJ; Ngai MY
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113841. PubMed ID: 34783154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic flavin-catalysed reactions for organic synthesis.
    Iida H; Imada Y; Murahashi SI
    Org Biomol Chem; 2015 Jul; 13(28):7599-613. PubMed ID: 26077635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.
    Straathof NJ; Su Y; Hessel V; Noël T
    Nat Protoc; 2016 Jan; 11(1):10-21. PubMed ID: 26633128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis.
    Iqbal N; Jung J; Park S; Cho EJ
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):539-42. PubMed ID: 24259270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants.
    Colmenares JC
    ChemSusChem; 2014 Jun; 7(6):1512-27. PubMed ID: 24965345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light.
    Li Y; Zhou K; Wen Z; Cao S; Shen X; Lei M; Gong L
    J Am Chem Soc; 2018 Nov; 140(46):15850-15858. PubMed ID: 30372057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.
    Sasano Y; Kogure N; Nishiyama T; Nagasawa S; Iwabuchi Y
    Chem Asian J; 2015 Apr; 10(4):1004-9. PubMed ID: 25620279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Molecular Oxygen, Solvent, and Light on Iridium-Photoredox/Nickel Dual-Catalyzed Cross-Coupling Reactions.
    Oderinde MS; Varela-Alvarez A; Aquila B; Robbins DW; Johannes JW
    J Org Chem; 2015 Aug; 80(15):7642-51. PubMed ID: 26140623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of α-Amino Acid Derivatives.
    Zhang H; Zhang P; Jiang M; Yang H; Fu H
    Org Lett; 2017 Mar; 19(5):1016-1019. PubMed ID: 28198184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*.
    Chernowsky CP; Chmiel AF; Wickens ZK
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21418-21425. PubMed ID: 34288312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.
    Zhou X; Li F; Li X; Li H; Wang Y; Sun L
    Dalton Trans; 2015 Jan; 44(2):475-9. PubMed ID: 25407102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visible-light-mediated copper photocatalysis for organic syntheses.
    Zhang Y; Wang Q; Yan Z; Ma D; Zheng Y
    Beilstein J Org Chem; 2021; 17():2520-2542. PubMed ID: 34760022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.