These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3025783)

  • 21. A role of excitatory amino acids in the activation of locus coeruleus neurons following cutaneous thermal stimuli.
    Hajós M; Engberg G
    Brain Res; 1990 Jun; 521(1-2):325-8. PubMed ID: 2169960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation.
    Murphy AZ; Behbehani MM
    Brain Res; 1993 Mar; 606(1):68-78. PubMed ID: 8462005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feedback loop between locus coeruleus and spinal trigeminal nucleus neurons responding to tooth pulp stimulation in the rat.
    Igarashi S; Sasa M; Takaori S
    Brain Res Bull; 1979; 4(1):75-83. PubMed ID: 223743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paraventricular neurosecretory neurons: synaptic inputs from the ventrolateral medulla in rats.
    Kannan H; Yamashita H; Osaka T
    Neurosci Lett; 1984 Oct; 51(2):183-8. PubMed ID: 6514236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noradrenergic inputs to sleep-related neurons in the preoptic area from the locus coeruleus and the ventrolateral medulla in the rat.
    Osaka T; Matsumura H
    Neurosci Res; 1994 Feb; 19(1):39-50. PubMed ID: 8008234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism underlying prolonged inhibition of rat locus coeruleus neurons following anti- and orthodromic activation.
    Watabe K; Satoh T
    Brain Res; 1979 Apr; 165(2):343-7. PubMed ID: 217495
    [No Abstract]   [Full Text] [Related]  

  • 27. Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro.
    Miles R
    J Neurophysiol; 1986 May; 55(5):1076-90. PubMed ID: 3012009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network.
    Aston-Jones G; Ennis M; Pieribone VA; Nickell WT; Shipley MT
    Science; 1986 Nov; 234(4777):734-7. PubMed ID: 3775363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lesions of the locus coeruleus abolish baroreceptor-induced depression of supraoptic neurones in the rat.
    Banks D; Harris MC
    J Physiol; 1984 Oct; 355():383-98. PubMed ID: 6436477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation.
    Waterhouse BD; Moises HC; Woodward DJ
    Brain Res; 1998 Apr; 790(1-2):33-44. PubMed ID: 9593812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presynaptic excitability changes induced in the solitary tract endings of laryngeal primary afferents by stimulation of nucleus raphe magnus and locus coeruleus.
    Lucier GE; Sessle BJ
    Neurosci Lett; 1981 Nov; 26(3):221-6. PubMed ID: 7322435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration.
    Lecas JC
    Eur J Neurosci; 2004 May; 19(9):2519-30. PubMed ID: 15128405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medullary responses to chemoreceptor activation are inhibited by locus coeruleus and nucleus raphe magnus.
    Pérez H; Ruiz S
    Neuroreport; 1995 Jul; 6(10):1373-6. PubMed ID: 7488727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Opioid circuits originating from the nucleus paragigantocellularis and their potential role in opiate withdrawal.
    Johnson AD; Peoples J; Stornetta RL; Van Bockstaele EJ
    Brain Res; 2002 Nov; 955(1-2):72-84. PubMed ID: 12419523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An electrophysiological analysis of caudally-projecting neurones from the hypothalamic paraventricular nucleus in the rat.
    Zerihun L; Harris M
    Brain Res; 1983 Feb; 261(1):13-20. PubMed ID: 6301621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nociceptive inputs into rostral ventrolateral medulla-spinal vasomotor neurones in rats.
    Sun MK; Spyer KM
    J Physiol; 1991 May; 436():685-700. PubMed ID: 2061851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro.
    Deuchars SA; Spyer KM; Gilbey MP
    J Neurophysiol; 1997 Jan; 77(1):229-35. PubMed ID: 9120564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Facilitatory Role of Paragigantocellularis Neurons in Opiate Withdrawal-Induced Hyperactivity of Rat Locus Coeruleus Neurons: An In Vitro Study.
    Kaeidi A; Azizi H; Javan M; Ahmadi Soleimani SM; Fathollahi Y; Semnanian S
    PLoS One; 2015; 10(7):e0134873. PubMed ID: 26230639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitatory amino acid receptors intrinsic to synaptic transmission in nucleus tractus solitarii.
    Miller BD; Felder RB
    Brain Res; 1988 Jul; 456(2):333-43. PubMed ID: 2905191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Central neural mechanism underlying pressor response to excitation of locus coeruleus in rats].
    Zhou CJ; Zou X; Ku YH
    Sheng Li Xue Bao; 1991 Dec; 43(6):556-64. PubMed ID: 1796319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.