BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30257925)

  • 1. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Template Model Explains Jerboa Gait Transitions Across a Broad Range of Speeds.
    Ding J; Moore TY; Gan Z
    Front Bioeng Biotechnol; 2022; 10():804826. PubMed ID: 35600899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bipedal compliant walking model generates periodic gait cycles with realistic swing dynamics.
    Lim H; Park S
    J Biomech; 2019 Jun; 91():79-84. PubMed ID: 31153624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skipping without and with hurdles in bipedal macaque: global mechanics.
    Blickhan R; Andrada E; Hirasaki E; Ogihara N
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38426486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common motor patterns of asymmetrical and symmetrical bipedal gaits.
    Pequera G; Ramírez Paulino I; Biancardi CM
    PeerJ; 2021; 9():e11970. PubMed ID: 34458023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N; Hirasaki E; Andrada E; Blickhan R
    J Hum Evol; 2018 Dec; 125():2-14. PubMed ID: 30502894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling of the spring in the leg during bouncing gaits of mammals.
    Lee DV; Isaacs MR; Higgins TE; Biewener AA; McGowan CP
    Integr Comp Biol; 2014 Dec; 54(6):1099-108. PubMed ID: 25305189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.
    Daley MA; Birn-Jeffery A
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29789347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torque-stiffness-controlled dynamic walking with central pattern generators.
    Huang Y; Vanderborght B; Van Ham R; Wang Q
    Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biomechanics of skipping gaits: a third locomotion paradigm?
    Minetti AE
    Proc Biol Sci; 1998 Jul; 265(1402):1227-35. PubMed ID: 9699315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative collision-based analysis of human gait.
    Lee DV; Comanescu TN; Butcher MT; Bertram JE
    Proc Biol Sci; 2013 Nov; 280(1771):20131779. PubMed ID: 24089334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanics of functional asymmetry in bipedal walking.
    Gregg RD; Dhaher YY; Degani A; Lynch KM
    IEEE Trans Biomed Eng; 2012 May; 59(5):1310-8. PubMed ID: 22328168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
    Dadashzadeh B; Esmaeili M; Macnab C
    PLoS One; 2017; 12(1):e0170122. PubMed ID: 28118401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.