These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30257943)

  • 1. ATP hydrolysis-coupled peptide translocation mechanism of
    Yu H; Lupoli TJ; Kovach A; Meng X; Zhao G; Nathan CF; Li H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9560-E9569. PubMed ID: 30257943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.
    Rizo AN; Lin J; Gates SN; Tse E; Bart SM; Castellano LM; DiMaio F; Shorter J; Southworth DR
    Nat Commun; 2019 Jun; 10(1):2393. PubMed ID: 31160557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor.
    Deville C; Franke K; Mogk A; Bukau B; Saibil HR
    Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system.
    Yin Y; Feng X; Yu H; Fay A; Kovach A; Glickman MS; Li H
    Cell Rep; 2021 May; 35(8):109166. PubMed ID: 34038719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine.
    Iljina M; Mazal H; Dayananda A; Zhang Z; Stan G; Riven I; Haran G
    Biophys J; 2024 Feb; 123(3):374-388. PubMed ID: 38196191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a substrate binding pocket in the amino terminal domain of
    Singh D; Tripathi P; Sharma R; Grover S; Batra JK
    J Biomol Struct Dyn; 2024 Aug; 42(12):6189-6199. PubMed ID: 37418201
    [No Abstract]   [Full Text] [Related]  

  • 9. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies.
    Werbeck ND; Kellner JN; Barends TR; Reinstein J
    Biochemistry; 2009 Aug; 48(30):7240-50. PubMed ID: 19594134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClpB chaperone passively threads soluble denatured proteins through its central pore.
    Nakazaki Y; Watanabe YH
    Genes Cells; 2014 Dec; 19(12):891-900. PubMed ID: 25288401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM Structures of the Hsp104 Protein Disaggregase Captured in the ATP Conformation.
    Lee S; Roh SH; Lee J; Sung N; Liu J; Tsai FTF
    Cell Rep; 2019 Jan; 26(1):29-36.e3. PubMed ID: 30605683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular mechanism of Hsp100 chaperone inhibition by the prion curing agent guanidinium chloride.
    Zeymer C; Werbeck ND; Schlichting I; Reinstein J
    J Biol Chem; 2013 Mar; 288(10):7065-76. PubMed ID: 23341453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2.
    Watanabe YH; Takano M; Yoshida M
    J Biol Chem; 2005 Jul; 280(26):24562-7. PubMed ID: 15809298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors.
    Singh P; Khurana H; Yadav SP; Dhiman K; Singh P; Ashish ; Singh R; Sharma D
    Int J Biol Macromol; 2020 Dec; 165(Pt A):375-387. PubMed ID: 32987071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory circuits of the AAA+ disaggregase Hsp104.
    Franzmann TM; Czekalla A; Walter SG
    J Biol Chem; 2011 May; 286(20):17992-8001. PubMed ID: 21454552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for intersubunit signaling in a protein disaggregating machine.
    Biter AB; Lee S; Sung N; Tsai FT
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12515-20. PubMed ID: 22802670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of oligomerization and nucleotide binding in the AAA+ chaperone ClpB.
    Werbeck ND; Zeymer C; Kellner JN; Reinstein J
    Biochemistry; 2011 Feb; 50(5):899-909. PubMed ID: 21182296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization.
    Wu D; Liu Y; Dai Y; Wang G; Lu G; Chen Y; Li N; Lin J; Gao N
    PLoS Biol; 2023 Feb; 21(2):e3001987. PubMed ID: 36745679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic structural states of ClpB involved in its disaggregation function.
    Uchihashi T; Watanabe YH; Nakazaki Y; Yamasaki T; Watanabe H; Maruno T; Ishii K; Uchiyama S; Song C; Murata K; Iino R; Ando T
    Nat Commun; 2018 Jun; 9(1):2147. PubMed ID: 29858573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 nucleotide-binding domain 2 (NBD2).
    Li J; Sha B
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1030-1. PubMed ID: 12037306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.