BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 30257993)

  • 21. Cellulose degradation by polysaccharide monooxygenases.
    Beeson WT; Vu VV; Span EA; Phillips CM; Marletta MA
    Annu Rev Biochem; 2015; 84():923-46. PubMed ID: 25784051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass.
    Moon M; Lee JP; Park GW; Lee JS; Park HJ; Min K
    Bioresour Technol; 2022 Sep; 359():127501. PubMed ID: 35753567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression.
    Castaño JD; El Khoury IV; Goering J; Evans JE; Zhang J
    Appl Environ Microbiol; 2024 May; 90(5):e0012224. PubMed ID: 38567954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Stepnov AA; Nærdal GK; Klinkenberg G; Eijsink VGH
    Methods Enzymol; 2020; 644():1-34. PubMed ID: 32943141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications.
    Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS
    Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails.
    Agrawal D; Basotra N; Balan V; Tsang A; Chadha BS
    Appl Biochem Biotechnol; 2020 Jun; 191(2):463-481. PubMed ID: 31792786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay.
    Molinelli L; Drula E; Gaillard J-C; Navarro D; Armengaud J; Berrin J-G; Tron T; Tarrago L
    Appl Environ Microbiol; 2024 Mar; 90(3):e0193123. PubMed ID: 38376171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic deconstruction of plant biomass by fungal enzymes.
    Kubicek CP; Kubicek EM
    Curr Opin Chem Biol; 2016 Dec; 35():51-57. PubMed ID: 27614174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation.
    Sun S; Li F; Li M; Zhang W; Jiang Z; Zhao H; Pu Y; Ragauskas AJ; Dai SY; Zhang X; Yu H; Yuan JS; Xie S
    iScience; 2023 Oct; 26(10):107870. PubMed ID: 37766973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
    Kim S; Ståhlberg J; Sandgren M; Paton RS; Beckham GT
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):149-54. PubMed ID: 24344312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mechanism of the chitinolytic peroxygenase reaction.
    Bissaro B; Streit B; Isaksen I; Eijsink VGH; Beckham GT; DuBois JL; Røhr ÅK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1504-1513. PubMed ID: 31907317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative Machinery of basidiomycetes as potential enhancers in lignocellulosic biorefineries: A lytic polysaccharide monooxygenases approach.
    Grace Barrios-Gutiérrez S; Inés Vélez-Mercado M; Rodrigues Ortega J; da Silva Lima A; Luiza da Rocha Fortes Saraiva A; Leila Berto G; Segato F
    Bioresour Technol; 2023 Oct; 386():129481. PubMed ID: 37437815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors.
    Chang H; Gacias Amengual N; Botz A; Schwaiger L; Kracher D; Scheiblbrandner S; Csarman F; Ludwig R
    Nat Commun; 2022 Oct; 13(1):6258. PubMed ID: 36271009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent insights into lytic polysaccharide monooxygenases (LPMOs).
    Tandrup T; Frandsen KEH; Johansen KS; Berrin JG; Lo Leggio L
    Biochem Soc Trans; 2018 Dec; 46(6):1431-1447. PubMed ID: 30381341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation.
    Zhang R
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3229-3243. PubMed ID: 32076777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
    Branch J; Rajagopal BS; Paradisi A; Yates N; Lindley PJ; Smith J; Hollingsworth K; Turnbull WB; Henrissat B; Parkin A; Berry A; Hemsworth GR
    Biochem J; 2021 Jul; 478(14):2927-2944. PubMed ID: 34240737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.