These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30258167)

  • 1. Micropatterning of planar metal electrodes by vacuum filling microfluidic channel geometries.
    Chatzimichail S; Supramaniam P; Ces O; Salehi-Reyhani A
    Sci Rep; 2018 Sep; 8(1):14380. PubMed ID: 30258167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective filling for patterning in microfluidic channels.
    Jindal R; Plawsky JL; Cramer SM
    Langmuir; 2005 May; 21(10):4458-63. PubMed ID: 16032860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.
    Choi JW; Rosset S; Niklaus M; Adleman JR; Shea H; Psaltis D
    Lab Chip; 2010 Mar; 10(6):783-8. PubMed ID: 20221568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding.
    Kamat AM; Zheng X; Jayawardhana B; Kottapalli AGP
    Nanotechnology; 2021 Feb; 32(9):095501. PubMed ID: 33217747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
    Duffy DC; McDonald JC; Schueller OJ; Whitesides GM
    Anal Chem; 1998 Dec; 70(23):4974-84. PubMed ID: 21644679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and inexpensive microfluidic electrode integration with conductive ink.
    McIntyre D; Lashkaripour A; Densmore D
    Lab Chip; 2020 Oct; 20(20):3690-3695. PubMed ID: 32895672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface micromachining of polydimethylsiloxane for microfluidics applications.
    Hill S; Qian W; Chen W; Fu J
    Biomicrofluidics; 2016 Sep; 10(5):054114. PubMed ID: 27795746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release.
    Selimovic A; Erkal JL; Spence DM; Martin RS
    Analyst; 2014 Nov; 139(22):5686-94. PubMed ID: 25105251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of a macro/micro architectured compartmentalised neuronal culture device using a rapid prototyping moulding process.
    Arundell M; Perry VH; Newman TA
    Lab Chip; 2011 Sep; 11(17):3001-5. PubMed ID: 21776485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
    Sonney S; Shek N; Moran-Mirabal JM
    Biomicrofluidics; 2015 Mar; 9(2):026501. PubMed ID: 25945145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping.
    Anderson JR; Chiu DT; Jackman RJ; Cherniavskaya O; McDonald JC; Wu H; Whitesides SH; Whitesides GM
    Anal Chem; 2000 Jul; 72(14):3158-64. PubMed ID: 10939381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning.
    Raos BJ; Unsworth CP; Costa JL; Rohde CA; Doyle CS; Bunting AS; Delivopoulos E; Murray AF; Dickinson ME; Simpson MC; Graham ES
    Biofabrication; 2013 Jun; 5(2):025006. PubMed ID: 23466346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.