These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30258208)

  • 1. Demonstrating a new technology for space debris removal using a bi-directional plasma thruster.
    Takahashi K; Charles C; Boswell RW; Ando A
    Sci Rep; 2018 Sep; 8(1):14417. PubMed ID: 30258208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency.
    Takahashi K
    Sci Rep; 2021 Feb; 11(1):2768. PubMed ID: 33531602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field measurement in microwave discharge ion thruster with electro-optic probe.
    Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H
    Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faraday cup sizing for electric propulsion ion beam study: Case of a field-emission-electric propulsion thruster.
    Hugonnaud V; Mazouffre S; Krejci D
    Rev Sci Instrum; 2021 Aug; 92(8):084502. PubMed ID: 34470437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative attitude stability analysis of double satellite formation for gravity field exploration in space debris environment.
    Pan B; Meng Y
    Sci Rep; 2023 Sep; 13(1):15989. PubMed ID: 37749118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement.
    Takahashi K; Komuro A; Ando A
    Rev Sci Instrum; 2015 Feb; 86(2):023505. PubMed ID: 25725840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-graphite field-emission cathode for space electric propulsion systems.
    Kleshch VI; Ismagilov RR; Mukhin VV; Orekhov AS; Filatyev AS; Obraztsov AN
    Nanotechnology; 2022 Jul; 33(41):. PubMed ID: 35785757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris.
    Ding Y; Li Z; Liu C; Kang Z; Sun M; Sun J; Chen L
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high power ion thruster for deep space missions.
    Polk JE; Goebel DM; Snyder JS; Schneider AC; Johnson LK; Sengupta A
    Rev Sci Instrum; 2012 Jul; 83(7):073306. PubMed ID: 22852684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inline screw feeding vacuum arc thruster.
    Kronhaus I; Laterza M; Maor Y
    Rev Sci Instrum; 2017 Apr; 88(4):043505. PubMed ID: 28456244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially- and vector-resolved momentum flux lost to a wall in a magnetic nozzle rf plasma thruster.
    Takahashi K; Sugawara T; Ando A
    Sci Rep; 2020 Jan; 10(1):1061. PubMed ID: 31974470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.
    Tsukizaki R; Koizumi H; Nishiyama K; Kuninaka H
    Rev Sci Instrum; 2011 Dec; 82(12):123103. PubMed ID: 22225195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A propellant-free superconducting solenoid thruster driven by geomagnetic field.
    Kuo HW; Pan KL; Lee WL
    J Adv Res; 2021 Feb; 28():269-275. PubMed ID: 33364062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and research of a coaxial microwave plasma thruster.
    Yang J; Xu Y; Tang J; Mao G; Yang T; Tan X
    Rev Sci Instrum; 2008 Aug; 79(8):083503. PubMed ID: 19044345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.