BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 30258225)

  • 1. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing.
    Lai B; Gao W; Cui K; Xie W; Tang Q; Jin W; Hu G; Ni B; Zhao K
    Nature; 2018 Oct; 562(7726):281-285. PubMed ID: 30258225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing.
    Kurup JT; Campeanu IJ; Kidder BL
    Epigenetics Chromatin; 2019 Apr; 12(1):20. PubMed ID: 30940185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
    de Dieuleveult M; Yen K; Hmitou I; Depaux A; Boussouar F; Bou Dargham D; Jounier S; Humbertclaude H; Ribierre F; Baulard C; Farrell NP; Park B; Keime C; Carrière L; Berlivet S; Gut M; Gut I; Werner M; Deleuze JF; Olaso R; Aude JC; Chantalat S; Pugh BF; Gérard M
    Nature; 2016 Feb; 530(7588):113-6. PubMed ID: 26814966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide profiling of nucleosome position and chromatin accessibility in single cells using scMNase-seq.
    Gao W; Lai B; Ni B; Zhao K
    Nat Protoc; 2020 Jan; 15(1):68-85. PubMed ID: 31836865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controls of nucleosome positioning in the human genome.
    Gaffney DJ; McVicker G; Pai AA; Fondufe-Mittendorf YN; Lewellen N; Michelini K; Widom J; Gilad Y; Pritchard JK
    PLoS Genet; 2012; 8(11):e1003036. PubMed ID: 23166509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of nucleosome organization in primary human cells.
    Valouev A; Johnson SM; Boyd SD; Smith CL; Fire AZ; Sidow A
    Nature; 2011 May; 474(7352):516-20. PubMed ID: 21602827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin.
    Sun FL; Cuaycong MH; Elgin SC
    Mol Cell Biol; 2001 Apr; 21(8):2867-79. PubMed ID: 11283265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer.
    Längst G; Schätz T; Langowski J; Grummt I
    Nucleic Acids Res; 1997 Feb; 25(3):511-7. PubMed ID: 9016589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction.
    Mueller B; Mieczkowski J; Kundu S; Wang P; Sadreyev R; Tolstorukov MY; Kingston RE
    Genes Dev; 2017 Mar; 31(5):451-462. PubMed ID: 28356342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome.
    Lim HW; Iwafuchi M
    Methods Mol Biol; 2023; 2599():59-68. PubMed ID: 36427143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chromatin remodeling protein Lsh alters nucleosome occupancy at putative enhancers and modulates binding of lineage specific transcription factors.
    Ren J; Finney R; Ni K; Cam M; Muegge K
    Epigenetics; 2019 Mar; 14(3):277-293. PubMed ID: 30861354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome positioning and spacing: from genome-wide maps to single arrays.
    Baldi S
    Essays Biochem; 2019 Apr; 63(1):5-14. PubMed ID: 31015380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.
    Winter DR; Song L; Mukherjee S; Furey TS; Crawford GE
    Genome Res; 2013 Jul; 23(7):1118-29. PubMed ID: 23657885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping nucleosome positions using DNase-seq.
    Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ
    Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.
    Chereji RV; Kan TW; Grudniewska MK; Romashchenko AV; Berezikov E; Zhimulev IF; Guryev V; Morozov AV; Moshkin YM
    Nucleic Acids Res; 2016 Feb; 44(3):1036-51. PubMed ID: 26429969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice.
    Wu Y; Zhang W; Jiang J
    PLoS Genet; 2014 May; 10(5):e1004378. PubMed ID: 24852592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo.
    Chen PB; Zhu LJ; Hainer SJ; McCannell KN; Fazzio TG
    BMC Genomics; 2014 Dec; 15(1):1104. PubMed ID: 25494698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array.
    McPherson CE; Shim EY; Friedman DS; Zaret KS
    Cell; 1993 Oct; 75(2):387-98. PubMed ID: 8402920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome.
    Nie Y; Cheng X; Chen J; Sun X
    BMC Genomics; 2014 Jun; 15(1):493. PubMed ID: 24942981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S
    Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.