These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mass determination of polyphosphoinositides and inositol triphosphate in rat adrenal glomerulosa cells with a microspectrophotometric method. Underwood RH; Greeley R; Glennon ET; Menachery AI; Braley LM; Williams GH Endocrinology; 1988 Jul; 123(1):211-9. PubMed ID: 2838254 [TBL] [Abstract][Full Text] [Related]
4. Effect of sodium intake on phosphoinositides and inositol trisphosphate response to angiotensin II, K+ and ACTH in rat glomerulosa cells. Underwood RH; Menachery AI; Williams GH J Endocrinol; 1989 Jul; 122(1):371-7. PubMed ID: 2549153 [TBL] [Abstract][Full Text] [Related]
5. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates. Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. Balla T; Guillemette G; Baukal AJ; Catt KJ J Biol Chem; 1987 Jul; 262(21):9952-5. PubMed ID: 3497156 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5-trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells. Baukal AJ; Balla T; Hunyady L; Hausdorff W; Guillemette G; Catt KJ J Biol Chem; 1988 May; 263(13):6087-92. PubMed ID: 3283118 [TBL] [Abstract][Full Text] [Related]
8. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Berridge MJ Biochem J; 1983 Jun; 212(3):849-58. PubMed ID: 6309155 [TBL] [Abstract][Full Text] [Related]
9. Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. Thomas AP; Alexander J; Williamson JR J Biol Chem; 1984 May; 259(9):5574-84. PubMed ID: 6325442 [TBL] [Abstract][Full Text] [Related]
11. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: comparison of the effects of histamine and angiotensin II. Stauderman KA; Pruss RM J Neurochem; 1990 Mar; 54(3):946-53. PubMed ID: 2303821 [TBL] [Abstract][Full Text] [Related]
12. Determination of mass changes in phosphatidylinositol 4,5-bisphosphate and evidence for agonist-stimulated metabolism of inositol 1,4,5-trisphosphate in airway smooth muscle. Chilvers ER; Batty IH; Challiss RA; Barnes PJ; Nahorski SR Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):373-9. PubMed ID: 1850985 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells. Guillemette G; Baukal AJ; Balla T; Catt KJ Biochem Biophys Res Commun; 1987 Jan; 142(1):15-22. PubMed ID: 3028399 [TBL] [Abstract][Full Text] [Related]
14. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells. Balla T; Guillemette G; Baukal AJ; Catt KJ Biochem Biophys Res Commun; 1987 Oct; 148(1):199-205. PubMed ID: 3675574 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations. Batty IH; Letcher AJ; Nahorski SR Biochem J; 1989 Feb; 258(1):23-32. PubMed ID: 2930510 [TBL] [Abstract][Full Text] [Related]