These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30258452)

  • 1. A Dynamic Co-expression Map of Early Inflorescence Development in
    Zhu C; Yang J; Box MS; Kellogg EA; Eveland AL
    Front Plant Sci; 2018; 9():1309. PubMed ID: 30258452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Zhu C; Liu L; Crowell O; Zhao H; Brutnell TP; Jackson D; Kellogg EA
    Front Plant Sci; 2021; 12():636749. PubMed ID: 33659018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis.
    Yang J; Bertolini E; Braud M; Preciado J; Chepote A; Jiang H; Eveland AL
    Plant Physiol; 2021 Nov; 187(3):1202-1220. PubMed ID: 33871654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in
    Yang J; Thames S; Best NB; Jiang H; Huang P; Dilkes BP; Eveland AL
    Plant Cell; 2018 Jan; 30(1):48-66. PubMed ID: 29263085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize.
    Huang P; Jiang H; Zhu C; Barry K; Jenkins J; Sandor L; Schmutz J; Box MS; Kellogg EA; Brutnell TP
    Nat Plants; 2017 Apr; 3():17054. PubMed ID: 28418381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species.
    Petti C; Shearer A; Tateno M; Ruwaya M; Nokes S; Brutnell T; Debolt S
    Front Plant Sci; 2013; 4():181. PubMed ID: 23802002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture.
    Strable J; Unger-Wallace E; Aragón Raygoza A; Briggs S; Vollbrecht E
    Plant Physiol; 2023 Feb; 191(2):1084-1101. PubMed ID: 36508348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes.
    Feng N; Song G; Guan J; Chen K; Jia M; Huang D; Wu J; Zhang L; Kong X; Geng S; Liu J; Li A; Mao L
    Plant Physiol; 2017 Jul; 174(3):1779-1794. PubMed ID: 28515146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architectural evolution and its implications for domestication in grasses.
    Doust A
    Ann Bot; 2007 Nov; 100(5):941-50. PubMed ID: 17478546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.
    Li P; Brutnell TP
    J Exp Bot; 2011 May; 62(9):3031-7. PubMed ID: 21459768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of inflorescence branch modifications in cereal crops.
    Koppolu R; Chen S; Schnurbusch T
    Curr Opin Plant Biol; 2022 Feb; 65():102168. PubMed ID: 35016076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setaria Comes of Age: Meeting Report on the Second International Setaria Genetics Conference.
    Zhu C; Yang J; Shyu C
    Front Plant Sci; 2017; 8():1562. PubMed ID: 29033954
    [No Abstract]   [Full Text] [Related]  

  • 13. QTL Mapping Combined With Comparative Analyses Identified Candidate Genes for Reduced Shattering in
    Odonkor S; Choi S; Chakraborty D; Martinez-Bello L; Wang X; Bahri BA; Tenaillon MI; Panaud O; Devos KM
    Front Plant Sci; 2018; 9():918. PubMed ID: 30073004
    [No Abstract]   [Full Text] [Related]  

  • 14. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae).
    Maren N; Zhao F; Aryal R; Touchell D; Liu W; Ranney T; Ashrafi H
    BMC Genomics; 2021 Jun; 22(1):483. PubMed ID: 34182921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and genetic pathways for optimizing spikelet development and grain yield.
    Yuan Z; Persson S; Zhang D
    aBIOTECH; 2020 Oct; 1(4):276-292. PubMed ID: 36304128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation.
    Lemmon ZH; Park SJ; Jiang K; Van Eck J; Schatz MC; Lippman ZB
    Genome Res; 2016 Dec; 26(12):1676-1686. PubMed ID: 27821409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize.
    Du Y; Wu B; Xing Y; Zhang Z
    J Adv Res; 2022 Nov; 41():179-190. PubMed ID: 36328747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory landscape of early maize inflorescence development.
    Parvathaneni RK; Bertolini E; Shamimuzzaman M; Vera DL; Lung PY; Rice BR; Zhang J; Brown PJ; Lipka AE; Bass HW; Eveland AL
    Genome Biol; 2020 Jul; 21(1):165. PubMed ID: 32631399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species.
    Martin AP; Palmer WM; Brown C; Abel C; Lunn JE; Furbank RT; Grof CP
    Biotechnol Biofuels; 2016; 9():45. PubMed ID: 26918029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflorescence diversification in the panicoid "bristle grass" clade (Paniceae, Poaceae): evidence from molecular phylogenies and developmental morphology.
    Doust AN; Kellogg EA
    Am J Bot; 2002 Aug; 89(8):1203-22. PubMed ID: 21665721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.