BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30258539)

  • 1. Ribosome-Templated Azide-Alkyne Cycloadditions Using Resistant Bacteria as Reaction Vessels:
    Jin X; Daher SS; Lee M; Buttaro B; Andrade RB
    ACS Med Chem Lett; 2018 Sep; 9(9):907-911. PubMed ID: 30258539
    [No Abstract]   [Full Text] [Related]  

  • 2. Ribosome-Templated Azide-Alkyne Cycloadditions: Synthesis of Potent Macrolide Antibiotics by In Situ Click Chemistry.
    Glassford I; Teijaro CN; Daher SS; Weil A; Small MC; Redhu SK; Colussi DJ; Jacobson MA; Childers WE; Buttaro B; Nicholson AW; MacKerell AD; Cooperman BS; Andrade RB
    J Am Chem Soc; 2016 Mar; 138(9):3136-44. PubMed ID: 26878192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected Reactions of Terminal Alkynes in Targeted "Click Chemistry'' Coppercatalyzed Azide-alkyne Cycloadditions.
    Ali TH; Heidelberg T; Hussen RSD; Tajuddin HA
    Curr Org Synth; 2019; 16(8):1143-1148. PubMed ID: 31984920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach.
    Gao P; Sun L; Zhou J; Li X; Zhan P; Liu X
    Expert Opin Drug Discov; 2016 Sep; 11(9):857-71. PubMed ID: 27400283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide-Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy.
    Wu ZG; Liao XJ; Yuan L; Wang Y; Zheng YX; Zuo JL; Pan Y
    Chemistry; 2020 May; 26(25):5694-5700. PubMed ID: 31953964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry.
    Hirose T; Sunazuka T; Sugawara A; Endo A; Iguchi K; Yamamoto T; Ui H; Shiomi K; Watanabe T; Sharpless KB; Omura S
    J Antibiot (Tokyo); 2009 May; 62(5):277-82. PubMed ID: 19329983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of Bacterial Resistance using Fluorescent Antibiotic Probes.
    Stone MRL; Phetsang W; Cooper MA; Blaskovich MAT
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.
    Finbloom JA; Han K; Slack CC; Furst AL; Francis MB
    J Am Chem Soc; 2017 Jul; 139(28):9691-9697. PubMed ID: 28650616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach.
    Pyta K; Klich K; Domagalska J; Przybylski P
    Eur J Med Chem; 2014 Sep; 84():651-76. PubMed ID: 25063947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of functionalized polyhydroxyalkanoates via "Click" chemistry: A proof of concept.
    Nkrumah-Agyeefi S; Scholz C
    Int J Biol Macromol; 2017 Feb; 95():796-808. PubMed ID: 27919815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topochemical Azide-Alkyne Cycloaddition Reaction.
    Hema K; Sureshan KM
    Acc Chem Res; 2019 Nov; 52(11):3149-3163. PubMed ID: 31600046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Bioorthogonal Chemistry in Tumor-Targeted Drug Discovery.
    Liu G; Wold EA; Zhou J
    Curr Top Med Chem; 2019; 19(11):892-897. PubMed ID: 31074366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycloadditions in modern polymer chemistry.
    Delaittre G; Guimard NK; Barner-Kowollik C
    Acc Chem Res; 2015 May; 48(5):1296-307. PubMed ID: 25871918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonic anhydrase inhibitors developed through 'click tailing'.
    Lopez M; Salmon AJ; Supuran CT; Poulsen SA
    Curr Pharm Des; 2010; 16(29):3277-87. PubMed ID: 20819066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ Generated and Premade 1-Copper(I) Alkynes in Cycloadditions.
    Wang X; Wang X; Wang X; Zhang J; Liu C; Hu Y
    Chem Rec; 2017 Dec; 17(12):1231-1248. PubMed ID: 28639363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor.
    Rzuczek SG; Park H; Disney MD
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10956-9. PubMed ID: 25164984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of click chemistry in medicinal chemistry.
    Hou J; Liu X; Shen J; Zhao G; Wang PG
    Expert Opin Drug Discov; 2012 Jun; 7(6):489-501. PubMed ID: 22607210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent applications of click chemistry in drug discovery.
    Jiang X; Hao X; Jing L; Wu G; Kang D; Liu X; Zhan P
    Expert Opin Drug Discov; 2019 Aug; 14(8):779-789. PubMed ID: 31094231
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.