BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1613 related articles for article (PubMed ID: 30259015)

  • 1. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.
    Liu Y; Bhattarai P; Dai Z; Chen X
    Chem Soc Rev; 2019 Apr; 48(7):2053-2108. PubMed ID: 30259015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics.
    Gao D; Zhang B; Liu Y; Hu D; Sheng Z; Zhang X; Yuan Z
    Theranostics; 2019; 9(18):5315-5331. PubMed ID: 31410217
    [No Abstract]   [Full Text] [Related]  

  • 3. Gold Nanostar@Polyaniline Theranostic Agent with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Anticancer Phototherapy at a Low Dosage.
    Wang Y; Yang Y; Yang L; Lin Y; Tian Y; Ni Q; Wang S; Ju H; Guo J; Lu G
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28570-28580. PubMed ID: 35726862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor.
    Li Y; Jiang C; Zhang D; Wang Y; Ren X; Ai K; Chen X; Lu L
    Acta Biomater; 2017 Jan; 47():124-134. PubMed ID: 27721008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy.
    Li J; Jiang R; Wang Q; Li X; Hu X; Yuan Y; Lu X; Wang W; Huang W; Fan Q
    Biomaterials; 2019 Oct; 217():119304. PubMed ID: 31279099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy.
    Zhu H; Xie C; Chen P; Pu K
    Curr Med Chem; 2019; 26(8):1389-1405. PubMed ID: 28933283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azulene-Containing Squaraines for Photoacoustic Imaging and Photothermal Therapy.
    Yao Y; Zhang Y; Zhang J; Yang X; Ding D; Shi Y; Xu H; Gao X
    ACS Appl Mater Interfaces; 2022 May; 14(17):19192-19203. PubMed ID: 35438482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.
    Guo Y; Wang XY; Chen YL; Liu FQ; Tan MX; Ao M; Yu JH; Ran HT; Wang ZX
    Acta Biomater; 2018 Oct; 80():308-326. PubMed ID: 30240955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid MoSe
    Chen J; Li X; Liu X; Yan H; Xie Z; Sheng Z; Gong X; Wang L; Liu X; Zhang P; Zheng H; Song L; Liu C
    Biomater Sci; 2018 May; 6(6):1503-1516. PubMed ID: 29633765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy.
    Mondal S; Montaño-Priede JL; Nguyen VT; Park S; Choi J; Doan VHM; Vo TMT; Vo TH; Large N; Kim CS; Oh J
    J Adv Res; 2022 Nov; 41():23-38. PubMed ID: 36328751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second Near-Infrared Plasmonic Nanomaterials for Photoacoustic Imaging and Photothermal Therapy.
    Yan T; Su M; Wang Z; Zhang J
    Small; 2023 Jul; 19(30):e2300539. PubMed ID: 37060228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy.
    Hu X; Tang Y; Hu Y; Lu F; Lu X; Wang Y; Li J; Li Y; Ji Y; Wang W; Ye D; Fan Q; Huang W
    Theranostics; 2019; 9(14):4168-4181. PubMed ID: 31281539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second near-infrared photothermal materials for combinational nanotheranostics.
    Xu C; Pu K
    Chem Soc Rev; 2021 Jan; 50(2):1111-1137. PubMed ID: 33245316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency.
    Zhang J; Chen J; Ren J; Guo W; Li X; Chen R; Chelora J; Cui X; Wan Y; Liang XJ; Hao Y; Lee CS
    Biomaterials; 2018 Oct; 181():92-102. PubMed ID: 30081305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Cu-Ag
    Dong L; Ji G; Liu Y; Xu X; Lei P; Du K; Song S; Feng J; Zhang H
    Nanoscale; 2018 Jan; 10(2):825-831. PubMed ID: 29260827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended π-Conjugative Carbon Nitride for Single 1064 nm Laser-Activated Photodynamic/Photothermal Synergistic Therapy and Photoacoustic Imaging.
    Tian Y; Zhao D; Huang X; Guan X; Wang F; Wei X
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7626-7635. PubMed ID: 35119818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy.
    Wu F; Chen L; Yue L; Wang K; Cheng K; Chen J; Luo X; Zhang T
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21408-21416. PubMed ID: 31120723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms.
    Wang C; Dai C; Hu Z; Li H; Yu L; Lin H; Bai J; Chen Y
    Nanoscale Horiz; 2019 Mar; 4(2):415-425. PubMed ID: 32254094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second near-infrared photoactivatable biocompatible polymer nanoparticles for effective in vitro and in vivo cancer theranostics.
    Wang F; Men X; Chen H; Mi F; Xu M; Men X; Yuan Z; Lo PK
    Nanoscale; 2021 Aug; 13(31):13410-13420. PubMed ID: 34477746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Melanin Nanoparticles for Photoacoustic Imaging Guided Photothermal Therapy.
    Fu M; Yang Y; Zhang Z; He Y; Wang Y; Liu C; Xu X; Lin J; Yan F
    Small; 2023 Apr; 19(14):e2205343. PubMed ID: 36581563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 81.