These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30259045)

  • 21. Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties.
    Su J; Feng X; Sloppy JD; Guo L; Grimes CA
    Nano Lett; 2011 Jan; 11(1):203-8. PubMed ID: 21114333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. InP nanopore arrays for photoelectrochemical hydrogen generation.
    Li Q; Zheng M; Zhang B; Zhu C; Wang F; Song J; Zhong M; Ma L; Shen W
    Nanotechnology; 2016 Feb; 27(7):075704. PubMed ID: 26775672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic photoelectrochemical cell for solar-driven CO
    Kalamaras E; Belekoukia M; Tan JZY; Xuan J; Maroto-Valer MM; Andresen JM
    Faraday Discuss; 2019 Jul; 215(0):329-344. PubMed ID: 30942213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical CdS Nanorod@SnO
    Wang W; Jin C; Qi L
    Small; 2018 Jul; ():e1801352. PubMed ID: 30027578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High performance BiFeO
    Das S; Fourmont P; Benetti D; Cloutier SG; Nechache R; Wang ZM; Rosei F
    J Chem Phys; 2020 Aug; 153(8):084705. PubMed ID: 32872869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cu
    Yang Y; Xu D; Wu Q; Diao P
    Sci Rep; 2016 Oct; 6():35158. PubMed ID: 27748380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CuO nanorod arrays by gas-phase cation exchange for efficient photoelectrochemical water splitting.
    Zheng Z; Morgan M; Maji P; Xia X; Zu X; Zhou W
    RSC Adv; 2023 Jan; 13(6):3487-3493. PubMed ID: 36756593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination.
    Hernández S; Cauda V; Chiodoni A; Dallorto S; Sacco A; Hidalgo D; Celasco E; Pirri CF
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12153-67. PubMed ID: 24983821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array.
    Kim H; Yong K
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13258-64. PubMed ID: 24274430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gradient Self-Doped CuBi
    Wang F; Septina W; Chemseddine A; Abdi FF; Friedrich D; Bogdanoff P; van de Krol R; Tilley SD; Berglund SP
    J Am Chem Soc; 2017 Oct; 139(42):15094-15103. PubMed ID: 28968492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance.
    Su J; Geng P; Li X; Zhao Q; Quan X; Chen G
    Nanoscale; 2015 Oct; 7(39):16282-9. PubMed ID: 26376767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of large area Cu
    Panzeri G; Cristina M; Jagadeesh MS; Bussetti G; Magagnin L
    Sci Rep; 2020 Oct; 10(1):18730. PubMed ID: 33127936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.
    Yang Y; Wang M; Zhang P; Wang W; Han H; Sun L
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30143-30151. PubMed ID: 27762535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron.
    Cots A; Bonete P; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26348-26356. PubMed ID: 30016591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient CuO/Ag
    Mustafa E; Dawi EA; Ibupoto ZH; Ibrahim AMM; Elsukova A; Liu X; Tahira A; Adam RE; Willander M; Nur O
    RSC Adv; 2023 Apr; 13(17):11297-11310. PubMed ID: 37057263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
    Hwang YJ; Hahn C; Liu B; Yang P
    ACS Nano; 2012 Jun; 6(6):5060-9. PubMed ID: 22621345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.