These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 3025912)

  • 1. Serotonin receptor subtype agonists: differential effects on sensorimotor reactivity measured with acoustic startle.
    Davis M; Cassella JV; Wrean WH; Kehne JH
    Psychopharmacol Bull; 1986; 22(3):837-43. PubMed ID: 3025912
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity.
    Galici R; Boggs JD; Miller KL; Bonaventure P; Atack JR
    Behav Pharmacol; 2008 Mar; 19(2):153-9. PubMed ID: 18332680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5,7-dihydroxytryptamine injections into the prefrontal cortex and nucleus accumbens differently affect prepulse inhibition and baseline startle magnitude in rats.
    Mohr D; von Ameln-Mayerhofer A; Fendt M
    Behav Brain Res; 2009 Aug; 202(1):58-63. PubMed ID: 19447281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amygdaloid GABA, not glutamate neurotransmission or mRNA transcription controls footshock-associated fear arousal in the acoustic startle paradigm.
    Van Nobelen M; Kokkinidis L
    Neuroscience; 2006; 137(2):707-16. PubMed ID: 16289581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effector systems coupled to serotonin receptors in brain: serotonin stimulated phosphoinositide hydrolysis.
    Sanders-Bush E; Conn PJ
    Psychopharmacol Bull; 1986; 22(3):829-36. PubMed ID: 3025911
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of corticotropin-releasing factor on prepulse inhibition of the acoustic startle response in two rat strains.
    Conti LH; Murry JD; Ruiz MA; Printz MP
    Psychopharmacology (Berl); 2002 May; 161(3):296-303. PubMed ID: 12021833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The sensorimotor reactivity of rats with an initially high anxiety-phobia level].
    Krupina NA; Orlova IN; Kryzhanovskiĭ GN; Solov'ev AD
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(6):1097-105. PubMed ID: 7879433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of TRH on acoustic startle, conditioned fear and active avoidance in rats.
    Thompson BL; Rosen JB
    Neuropeptides; 2000 Feb; 34(1):38-44. PubMed ID: 10688967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of zimelidine on various transmitter systems in the brain.
    Hall H; Ross SB; Ogren SO
    Adv Biochem Psychopharmacol; 1982; 31():321-5. PubMed ID: 6282061
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity.
    Schmid S; Fendt M
    Neuropharmacology; 2006 Feb; 50(2):154-64. PubMed ID: 16188284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural monoaminergic mediation of the effect of St. John's wort extract on prepulse inhibition of the acoustic startle response in rats.
    Khalifa AE
    J Psychopharmacol; 2005 Sep; 19(5):467-72. PubMed ID: 16166183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Central serotonin receptors and chronic treatment with selective serotonin reuptake inhibitors in the rat: comparative effects of fluoxetine and paroxetine].
    Le Poul E; Lima L; Laporte AM; Even C; Doucet E; Fattaccini CM; Laaris N; Hamon M; Lanfumey L
    Encephale; 1995; 21(2):123-32. PubMed ID: 7781583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced sensorimotor reactivity following traumatic brain injury in rats.
    Wiley JL; Compton AD; Pike BR; Temple MD; McElderry JW; Hamm RJ
    Brain Res; 1996 Apr; 716(1-2):47-52. PubMed ID: 8738219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral amygdala dopamine receptor antagonism modulates initial reactivity to but not habituation of the acoustic startle response.
    Stevenson CW; Gratton A
    Behav Brain Res; 2004 Aug; 153(2):383-7. PubMed ID: 15265633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ethanol on acoustic startle response and cerebellar cyclic GMP level: interaction with pilocarpine and atropine.
    Klosowicz BA; O'Donnell A; Volicer L
    Curr Alcohol; 1979; 5():173-80. PubMed ID: 226333
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of B vitamins on binding properties of serotonin receptors in the CNS of rats.
    Dakshinamurti K; Sharma SK; Bonke D
    Klin Wochenschr; 1990 Jan; 68(2):142-5. PubMed ID: 2157087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anxiolytic-like effects observed in rats exposed to the elevated zero-maze following treatment with 5-HT2/5-HT3/5-HT4 ligands.
    Bell R; Duke AA; Gilmore PE; Page D; Bègue L
    Sci Rep; 2014 Jan; 4():3881. PubMed ID: 24457553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between corticotropin-releasing factor and the serotonin 1A receptor system on acoustic startle amplitude and prepulse inhibition of the startle response in two rat strains.
    Conti LH
    Neuropharmacology; 2012 Jan; 62(1):256-63. PubMed ID: 21835187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic startle reduction in cocaine dependence persists for 1 year of abstinence.
    Corcoran S; Norrholm SD; Cuthbert B; Sternberg M; Hollis J; Duncan E
    Psychopharmacology (Berl); 2011 May; 215(1):93-103. PubMed ID: 21161186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cocaine self-administration history under limited and extended access conditions on in vivo striatal dopamine neurochemistry and acoustic startle in rhesus monkeys.
    Kirkland Henry P; Davis M; Howell LL
    Psychopharmacology (Berl); 2009 Aug; 205(2):237-47. PubMed ID: 19365621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.