BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30259480)

  • 1. Analysis of Legionella Metabolism by Pathogen Vacuole Proteomics.
    Manske C; Finsel I; Hoffmann C; Hilbi H
    Methods Mol Biol; 2018; 1841():59-76. PubMed ID: 30259480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogen vacuole purification from legionella-infected amoeba and macrophages.
    Hoffmann C; Finsel I; Hilbi H
    Methods Mol Biol; 2013; 954():309-21. PubMed ID: 23150404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of pathogen vacuoles from Legionella-infected phagocytes.
    Hoffmann C; Finsel I; Hilbi H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of
    Schmölders J; Manske C; Otto A; Hoffmann C; Steiner B; Welin A; Becher D; Hilbi H
    Mol Cell Proteomics; 2017 Apr; 16(4):622-641. PubMed ID: 28183814
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition.
    Welin A; Weber S; Hilbi H
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomagnetic purification of fluorescent Legionella-containing vacuoles.
    Finsel I; Hoffmann C; Hilbi H
    Methods Mol Biol; 2013; 983():431-43. PubMed ID: 23494322
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Weber S; Steiner B; Welin A; Hilbi H
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538188
    [No Abstract]   [Full Text] [Related]  

  • 8.
    Swart AL; Harrison CF; Eichinger L; Steinert M; Hilbi H
    Front Cell Infect Microbiol; 2018; 8():61. PubMed ID: 29552544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of Legionella-containing vacuoles by immuno-magnetic separation.
    Urwyler S; Finsel I; Ragaz C; Hilbi H
    Curr Protoc Cell Biol; 2010 Mar; Chapter 3():Unit 3.34. PubMed ID: 20235103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages.
    Hoffmann C; Finsel I; Otto A; Pfaffinger G; Rothmeier E; Hecker M; Becher D; Hilbi H
    Cell Microbiol; 2014 Jul; 16(7):1034-52. PubMed ID: 24373249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics.
    Steiner B; Weber S; Hilbi H
    Int J Med Microbiol; 2018 Jan; 308(1):49-57. PubMed ID: 28865995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection.
    Weber S; Wagner M; Hilbi H
    mBio; 2014 Jan; 5(1):e00839-13. PubMed ID: 24473127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection.
    Hilbi H; Rothmeier E; Hoffmann C; Harrison CF
    Small GTPases; 2014; 5(3):1-6. PubMed ID: 25496424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases.
    Urwyler S; Nyfeler Y; Ragaz C; Lee H; Mueller LN; Aebersold R; Hilbi H
    Traffic; 2009 Jan; 10(1):76-87. PubMed ID: 18980612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Polar
    Böck D; Hüsler D; Steiner B; Medeiros JM; Welin A; Radomska KA; Hardt WD; Pilhofer M; Hilbi H
    mBio; 2021 Oct; 12(5):e0218021. PubMed ID: 34634944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Flow Cytometry of Legionella-Containing Vacuoles in Intact and Homogenized Wild-Type and Mutant Dictyostelium.
    Welin A; Hüsler D; Hilbi H
    Methods Mol Biol; 2023; 2635():63-85. PubMed ID: 37074657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions.
    Dolinsky S; Haneburger I; Cichy A; Hannemann M; Itzen A; Hilbi H
    Infect Immun; 2014 Oct; 82(10):4021-33. PubMed ID: 25024371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones.
    Finsel I; Hilbi H
    Cell Microbiol; 2015 Jul; 17(7):935-50. PubMed ID: 25903720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE.
    Weber SS; Ragaz C; Hilbi H
    Cell Microbiol; 2009 Mar; 11(3):442-60. PubMed ID: 19021631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.
    Rothmeier E; Pfaffinger G; Hoffmann C; Harrison CF; Grabmayr H; Repnik U; Hannemann M; Wölke S; Bausch A; Griffiths G; Müller-Taubenberger A; Itzen A; Hilbi H
    PLoS Pathog; 2013 Sep; 9(9):e1003598. PubMed ID: 24068924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.