These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30259749)
1. Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges. Watanabe R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Ohashi R; Mizuguchi K Mol Pharm; 2018 Nov; 15(11):5302-5311. PubMed ID: 30259749 [TBL] [Abstract][Full Text] [Related]
2. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay. Kosugi Y; Hosea N Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525 [TBL] [Abstract][Full Text] [Related]
3. In Silico Prediction of Fraction Unbound in Human Plasma from Chemical Fingerprint Using Automated Machine Learning. Mulpuru V; Mishra N ACS Omega; 2021 Mar; 6(10):6791-6797. PubMed ID: 33748592 [TBL] [Abstract][Full Text] [Related]
4. Applying linear and non-linear methods for parallel prediction of volume of distribution and fraction of unbound drug. del Amo EM; Ghemtio L; Xhaard H; Yliperttula M; Urtti A; Kidron H PLoS One; 2013; 8(10):e74758. PubMed ID: 24116008 [TBL] [Abstract][Full Text] [Related]
5. Computational Model To Predict the Fraction of Unbound Drug in the Brain. Esaki T; Ohashi R; Watanabe R; Natsume-Kitatani Y; Kawashima H; Nagao C; Mizuguchi K J Chem Inf Model; 2019 Jul; 59(7):3251-3261. PubMed ID: 31260629 [TBL] [Abstract][Full Text] [Related]
6. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Watanabe R; Ohashi R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Mizuguchi K Sci Rep; 2019 Dec; 9(1):18782. PubMed ID: 31827176 [TBL] [Abstract][Full Text] [Related]
7. Direct determination of the ratio of unbound fraction in plasma to unbound fraction in microsomal system (fu p/fu mic) for refined prediction of phase I mediated metabolic hepatic clearance. Deshmukh SV; Harsch A J Pharmacol Toxicol Methods; 2011; 63(1):35-9. PubMed ID: 20433934 [TBL] [Abstract][Full Text] [Related]
8. A Practical Handa K; Fujita D; Hirano M; Yoshimura S; Kageyama M; Iijima T Mol Pharm; 2024 Oct; 21(10):5182-5191. PubMed ID: 39324316 [TBL] [Abstract][Full Text] [Related]
9. Exploring in silico prediction of the unbound brain-to-plasma drug concentration ratio: model validation, renewal, and interpretation. Varadharajan S; Winiwarter S; Carlsson L; Engkvist O; Anantha A; Kogej T; Fridén M; Stålring J; Chen H J Pharm Sci; 2015 Mar; 104(3):1197-206. PubMed ID: 25546343 [TBL] [Abstract][Full Text] [Related]
10. Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds. Parrott N; Manevski N; Olivares-Morales A Mol Pharm; 2022 Nov; 19(11):3858-3868. PubMed ID: 36150125 [TBL] [Abstract][Full Text] [Related]
11. In Silico Prediction of Human Intravenous Pharmacokinetic Parameters with Improved Accuracy. Wang Y; Liu H; Fan Y; Chen X; Yang Y; Zhu L; Zhao J; Chen Y; Zhang Y J Chem Inf Model; 2019 Sep; 59(9):3968-3980. PubMed ID: 31403793 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets. Winiwarter S; Chang G; Desai P; Menzel K; Faller B; Arimoto R; Keefer C; Broccatell F Mol Pharm; 2019 Sep; 16(9):4077-4085. PubMed ID: 31348668 [TBL] [Abstract][Full Text] [Related]
13. Predicting Volume of Distribution in Humans: Performance of In Silico Methods for a Large Set of Structurally Diverse Clinical Compounds. Murad N; Pasikanti KK; Madej BD; Minnich A; McComas JM; Crouch S; Polli JW; Weber AD Drug Metab Dispos; 2021 Feb; 49(2):169-178. PubMed ID: 33239335 [TBL] [Abstract][Full Text] [Related]
14. Comparison between lab variability and Fagerholm U; Spjuth O; Hellberg S Xenobiotica; 2021 Oct; 51(10):1095-1100. PubMed ID: 34346291 [TBL] [Abstract][Full Text] [Related]
15. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques. Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072 [TBL] [Abstract][Full Text] [Related]
16. An Accurate In Vitro Prediction of Human VD Berellini G; Lombardo F Drug Metab Dispos; 2019 Dec; 47(12):1380-1387. PubMed ID: 31578209 [TBL] [Abstract][Full Text] [Related]
17. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach. Vuppugalla R; Marathe P; He H; Jones RD; Yates JW; Jones HM; Gibson CR; Chien JY; Ring BJ; Adkison KK; Ku MS; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P J Pharm Sci; 2011 Oct; 100(10):4111-26. PubMed ID: 21480234 [TBL] [Abstract][Full Text] [Related]
18. In silico prediction of brain exposure: drug free fraction, unbound brain to plasma concentration ratio and equilibrium half-life. Spreafico M; Jacobson MP Curr Top Med Chem; 2013; 13(7):813-20. PubMed ID: 23578025 [TBL] [Abstract][Full Text] [Related]
19. Predicting drug metabolism and pharmacokinetics features of in-house compounds by a hybrid machine-learning model. Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E Drug Metab Pharmacokinet; 2021 Aug; 39():100395. PubMed ID: 33991751 [TBL] [Abstract][Full Text] [Related]
20. Exploring molecular fragments for fraction unbound in human plasma of chemicals: a fragment-based cheminformatics approach. Banerjee S; Bhattacharya A; Dasgupta I; Gayen S; Amin SA SAR QSAR Environ Res; 2024 Sep; 35(9):817-836. PubMed ID: 39422534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]