These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Exploration of Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129 [TBL] [Abstract][Full Text] [Related]
5. Fully Productive Cell-Free Genetic Code Expansion by Structure-Based Engineering of Seki E; Yanagisawa T; Kuratani M; Sakamoto K; Yokoyama S ACS Synth Biol; 2020 Apr; 9(4):718-732. PubMed ID: 32182048 [TBL] [Abstract][Full Text] [Related]
6. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells. Meineke B; Heimgärtner J; Eirich J; Landreh M; Elsässer SJ Cell Rep; 2020 Jun; 31(12):107811. PubMed ID: 32579937 [TBL] [Abstract][Full Text] [Related]
8. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. Cho CC; Blankenship LR; Ma X; Xu S; Liu W J Mol Biol; 2022 Apr; 434(8):167453. PubMed ID: 35033561 [TBL] [Abstract][Full Text] [Related]
12. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion. Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698 [TBL] [Abstract][Full Text] [Related]
13. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747 [TBL] [Abstract][Full Text] [Related]
14. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase. Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143 [TBL] [Abstract][Full Text] [Related]
15. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Dunkelmann DL; Chin JW Chem Rev; 2024 Oct; 124(19):11008-11062. PubMed ID: 39235427 [TBL] [Abstract][Full Text] [Related]
16. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Gong X; Zhang H; Shen Y; Fu X J Bacteriol; 2023 Feb; 205(2):e0038522. PubMed ID: 36695595 [TBL] [Abstract][Full Text] [Related]
17. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Krahn N; Zhang J; Melnikov SV; Tharp JM; Villa A; Patel A; Howard RJ; Gabir H; Patel TR; Stetefeld J; Puglisi J; Söll D Nucleic Acids Res; 2024 Jan; 52(2):513-524. PubMed ID: 38100361 [TBL] [Abstract][Full Text] [Related]
18. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Owens AE; Grasso KT; Ziegler CA; Fasan R Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180 [TBL] [Abstract][Full Text] [Related]
19. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Wan W; Tharp JM; Liu WR Biochim Biophys Acta; 2014 Jun; 1844(6):1059-70. PubMed ID: 24631543 [TBL] [Abstract][Full Text] [Related]
20. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. Baumann T; Exner M; Budisa N Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]