These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30261034)
21. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Edwards SG; Imathiu SM; Ray RV; Back M; Hare MC Int J Food Microbiol; 2012 May; 156(2):168-75. PubMed ID: 22521800 [TBL] [Abstract][Full Text] [Related]
22. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Kristensen R; Torp M; Kosiak B; Holst-Jensen A Mycol Res; 2005 Feb; 109(Pt 2):173-86. PubMed ID: 15839101 [TBL] [Abstract][Full Text] [Related]
23. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Kim SH; Vujanovic V Appl Microbiol Biotechnol; 2016 Jun; 100(12):5257-72. PubMed ID: 27121573 [TBL] [Abstract][Full Text] [Related]
24. Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Ioos R; Belhadj A; Menez M Mycopathologia; 2004 Oct; 158(3):351-62. PubMed ID: 15645174 [TBL] [Abstract][Full Text] [Related]
25. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor. Krams I; Daukste J; Kivleniece I; Krama T; Rantala MJ Insect Sci; 2013 Dec; 20(6):771-7. PubMed ID: 23956033 [TBL] [Abstract][Full Text] [Related]
26. Ingestion of Nylon 11 Polymers by the Mealworm ( Leicht A; Masuda H Front Biosci (Elite Ed); 2023 May; 15(2):11. PubMed ID: 37369567 [TBL] [Abstract][Full Text] [Related]
27. Copulation enhances resistance against an entomopathogenic fungus in the mealworm beetle Tenebrio molitor. Valtonen TM; Viitaniemi H; Rantala MJ Parasitology; 2010 May; 137(6):985-9. PubMed ID: 20128944 [TBL] [Abstract][Full Text] [Related]
30. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Jurado M; Vázquez C; Patiño B; González-Jaén MT Syst Appl Microbiol; 2005 Aug; 28(6):562-8. PubMed ID: 16104354 [TBL] [Abstract][Full Text] [Related]
31. Molecular identification of entomopathogenic Fusarium species associated with Tribolium species in stored grains. Chehri K J Invertebr Pathol; 2017 Mar; 144():1-6. PubMed ID: 28065703 [TBL] [Abstract][Full Text] [Related]
32. Potential of Tenebrio molitor (Coleoptera: Tenebrionidae) as a bioassay probe for Metarhizium brunneum (Hypocreales: Clavicipitaceae) activity against Ixodes scapularis (Acari: Ixodidae). Bharadwaj A; Stafford KC J Econ Entomol; 2011 Dec; 104(6):2095-8. PubMed ID: 22299376 [TBL] [Abstract][Full Text] [Related]
33. Species diversity and mycotoxin production by members of the Fusarium tricinctum species complex associated with Fusarium head blight of wheat and barley in Italy. Senatore MT; Ward TJ; Cappelletti E; Beccari G; McCormick SP; Busman M; Laraba I; O'Donnell K; Prodi A Int J Food Microbiol; 2021 Nov; 358():109298. PubMed ID: 34210546 [TBL] [Abstract][Full Text] [Related]
34. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Osimani A; Milanović V; Cardinali F; Garofalo C; Clementi F; Pasquini M; Riolo P; Ruschioni S; Isidoro N; Loreto N; Franciosi E; Tuohy K; Petruzzelli A; Foglini M; Gabucci C; Tonucci F; Aquilanti L Int J Food Microbiol; 2018 May; 272():49-60. PubMed ID: 29525619 [TBL] [Abstract][Full Text] [Related]
35. Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. Gräfenhan T; Patrick SK; Roscoe M; Trelka R; Gaba D; Chan JM; McKendry T; Clear RM; Tittlemier SA J Agric Food Chem; 2013 Jun; 61(23):5425-37. PubMed ID: 23683177 [TBL] [Abstract][Full Text] [Related]
36. Responses of Oat Grains to Fusarium poae and F. langsethiae Infections and Mycotoxin Contaminations. Martin C; Schöneberg T; Vogelgsang S; Mendes Ferreira CS; Morisoli R; Bertossa M; Bucheli TD; Mauch-Mani B; Mascher F Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29361693 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum. Winter M; Koopmann B; Döll K; Karlovsky P; Kropf U; Schlüter K; von Tiedemann A Phytopathology; 2013 Jul; 103(7):682-9. PubMed ID: 23758328 [TBL] [Abstract][Full Text] [Related]
38. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina. Palacios SA; Susca A; Haidukowski M; Stea G; Cendoya E; Ramírez ML; Chulze SN; Farnochi MC; Moretti A; Torres AM Int J Food Microbiol; 2015 May; 201():35-41. PubMed ID: 25732000 [TBL] [Abstract][Full Text] [Related]
39. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Rho MS; Lee KP J Insect Physiol; 2014 Dec; 71():37-45. PubMed ID: 25308181 [TBL] [Abstract][Full Text] [Related]
40. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Scherm B; Balmas V; Spanu F; Pani G; Delogu G; Pasquali M; Migheli Q Mol Plant Pathol; 2013 May; 14(4):323-41. PubMed ID: 23279114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]