These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30261119)
1. Electrospun poly(ε-caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. Yu T; Gleeson SE; Li CY; Marcolongo M J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1141-1149. PubMed ID: 30261119 [TBL] [Abstract][Full Text] [Related]
2. MC3T3 E1 cell response to mineralized nanofiber shish kebab structures. Yu T; Petrovic M; Attia A; Galindo D; Staub MC; Kim S; Li CY; Marcolongo M J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1601-1610. PubMed ID: 33608965 [TBL] [Abstract][Full Text] [Related]
3. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
4. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Wang X; Salick MR; Wang X; Cordie T; Han W; Peng Y; Li Q; Turng LS Biomacromolecules; 2013 Oct; 14(10):3557-69. PubMed ID: 24010580 [TBL] [Abstract][Full Text] [Related]
5. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. Chen X; Gleeson SE; Yu T; Khan N; Yucha RW; Marcolongo M; Li CY J Biomed Mater Res A; 2017 Jun; 105(6):1786-1798. PubMed ID: 28198135 [TBL] [Abstract][Full Text] [Related]
6. Endothelial Cell Migration on Poly(ε-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils. Guo X; Wang X; Li X; Jiang YC; Han S; Ma L; Guo H; Wang Z; Li Q Biomacromolecules; 2020 Mar; 21(3):1202-1213. PubMed ID: 31895550 [TBL] [Abstract][Full Text] [Related]
7. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L; Wu Y; Hu T; Ma PX; Guo B Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823 [TBL] [Abstract][Full Text] [Related]
8. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. Yan D; Jones J; Yuan XY; Xu XH; Sheng J; Lee JC; Ma GQ; Yu QS J Biomed Mater Res A; 2013 Apr; 101(4):963-72. PubMed ID: 22965926 [TBL] [Abstract][Full Text] [Related]
9. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats. Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844 [TBL] [Abstract][Full Text] [Related]
10. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Wang Y; Wang G; Chen L; Li H; Yin T; Wang B; Lee JC; Yu Q Biofabrication; 2009 Mar; 1(1):015001. PubMed ID: 20811096 [TBL] [Abstract][Full Text] [Related]
11. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
12. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Mavis B; Demirtaş TT; Gümüşderelioğlu M; Gündüz G; Colak U Acta Biomater; 2009 Oct; 5(8):3098-111. PubMed ID: 19426840 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Chen X; Fu X; Shi JG; Wang H Nanomedicine; 2013 Nov; 9(8):1283-92. PubMed ID: 23665421 [TBL] [Abstract][Full Text] [Related]
15. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Choi JS; Lee SJ; Christ GJ; Atala A; Yoo JJ Biomaterials; 2008 Jul; 29(19):2899-906. PubMed ID: 18400295 [TBL] [Abstract][Full Text] [Related]
16. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
17. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. Yu HS; Jang JH; Kim TI; Lee HH; Kim HW J Biomed Mater Res A; 2009 Mar; 88(3):747-54. PubMed ID: 18357562 [TBL] [Abstract][Full Text] [Related]
18. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization. Zhang C; Cao M; Lan J; Wei P; Cai Q; Yang X J Biomed Mater Res A; 2016 Aug; 104(8):1968-80. PubMed ID: 27027483 [TBL] [Abstract][Full Text] [Related]
19. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering. Ding H; Hu Y; Cheng Y; Yang H; Gong Y; Liang S; Wei Y; Huang D ACS Appl Bio Mater; 2021 Aug; 4(8):6167-6174. PubMed ID: 35006871 [TBL] [Abstract][Full Text] [Related]
20. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]