These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 30261122)
1. Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique. Jung BK; Kim JY; Kim YS; Roh TS; Seo A; Park KH; Shim JH; Yun IS J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1295-1303. PubMed ID: 30261122 [TBL] [Abstract][Full Text] [Related]
2. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916 [TBL] [Abstract][Full Text] [Related]
3. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. Park JY; Choi YJ; Shim JH; Park JH; Cho DW J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1016-1028. PubMed ID: 26922876 [TBL] [Abstract][Full Text] [Related]
5. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. Brennan JR; Cornett A; Chang B; Crotts SJ; Nourmohammadi Z; Lombaert I; Hollister SJ; Zopf DA J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):394-400. PubMed ID: 32830908 [TBL] [Abstract][Full Text] [Related]
6. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Zopf DA; Flanagan CL; Mitsak AG; Brennan JR; Hollister SJ Int J Pediatr Otorhinolaryngol; 2018 Nov; 114():170-174. PubMed ID: 30262359 [TBL] [Abstract][Full Text] [Related]
7. Influence of scaffold design on 3D printed cell constructs. Souness A; Zamboni F; Walker GM; Collins MN J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931 [TBL] [Abstract][Full Text] [Related]
8. One-Year Results of Ear Reconstruction with 3D Printed Implants. Kim M; Kim YJ; Kim YS; Roh TS; Lee EJ; Shim JH; Kang EH; Kim MJ; Yun IS Yonsei Med J; 2024 Aug; 65(8):456-462. PubMed ID: 39048321 [TBL] [Abstract][Full Text] [Related]
9. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Zopf DA; Mitsak AG; Flanagan CL; Wheeler M; Green GE; Hollister SJ Otolaryngol Head Neck Surg; 2015 Jan; 152(1):57-62. PubMed ID: 25281749 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction. Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096 [TBL] [Abstract][Full Text] [Related]
11. Human-engineered auricular reconstruction (hEAR) by 3D-printed molding with human-derived auricular and costal chondrocytes and adipose-derived mesenchymal stem cells. Landau S; Szklanny AA; Machour M; Kaplan B; Shandalov Y; Redenski I; Beckerman M; Harari-Steinberg O; Zavin J; Karni-Katovitch O; Goldfracht I; Michael I; Waldman SD; Duvdevani SI; Levenberg S Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34798628 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of 3D-Printed Implant for Two-Stage Ear Reconstruction Surgery and Its Clinical Application. Joo OY; Kim TH; Kim YS; Roh TS; Lee EJ; Shim JH; Cho HW; Yun IS Yonsei Med J; 2023 Apr; 64(4):291-296. PubMed ID: 36996901 [TBL] [Abstract][Full Text] [Related]
13. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Kim HY; Jung SY; Lee SJ; Lee HJ; Truong MD; Kim HS Laryngoscope; 2019 Feb; 129(2):351-357. PubMed ID: 30229920 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Auricular Cartilage Reconstruction Using a 3-Dimensional Printed Biodegradable Scaffold and Autogenous Minced Auricular Cartilage. Min SH; Kim JH; Lee MI; Kwak HH; Woo HM; Shim JH; Choi DM; Lee JS; Jeong JY; Kang BJ Ann Plast Surg; 2020 Aug; 85(2):185-193. PubMed ID: 32118635 [TBL] [Abstract][Full Text] [Related]
17. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311 [TBL] [Abstract][Full Text] [Related]
20. Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction. Wang H; Zhang J; Liu H; Wang Z; Li G; Liu Q; Wang C Int J Biol Macromol; 2023 Dec; 253(Pt 1):126294. PubMed ID: 37633565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]