These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30261126)

  • 1. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel large-pore lightweight polypropylene mesh has better biocompatibility for rat model of hernia.
    Qiu W; Zhong C; Xu R; Zou T; Wang F; Fan Y; Wang L; Yang Z
    J Biomed Mater Res A; 2018 May; 106(5):1269-1275. PubMed ID: 29314586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen-inducing biologization of prosthetic material for hernia repair: Polypropylene meshes coated with polyP/collagen.
    Ackermann M; Wang X; Wang S; Neufurth M; Schröder HC; Isemer FE; Müller WEG
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2109-2121. PubMed ID: 29024311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer.
    Muzio G; Perero S; Miola M; Oraldi M; Ferraris S; Vernè E; Festa F; Canuto RA; Festa V; Ferraris M
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1586-1593. PubMed ID: 27126254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing.
    Chen XY; Low HR; Loi XY; Merel L; Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2140-2151. PubMed ID: 30758129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro study on the deterioration of polypropylene hernia repair meshes.
    Gil D; Rex J; Reukov V; Vertegel A
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2225-2234. PubMed ID: 29068557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo soft tissue reinforcement with bacterial nanocellulose.
    Anton-Sales I; Roig-Sanchez S; Traeger K; Weis C; Laromaine A; Turon P; Roig A
    Biomater Sci; 2021 Apr; 9(8):3040-3050. PubMed ID: 33666604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ biofabrication of bacterial nanocellulose (BNC)/graphene oxide (GO) nano-biocomposite and study of its cationic dyes adsorption properties.
    Walling B; Bharali P; Ramachandran D; Viswanathan K; Hazarika S; Dutta N; Mudoi P; Manivannan J; Manjunath Kamath S; Kumari S; Vishwakarma V; Sorhie V; Gogoi B; Acharjee SA; Alemtoshi
    Int J Biol Macromol; 2023 Nov; 251():126309. PubMed ID: 37573902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive.
    Lu X; Khanna A; Luzinov I; Nagatomi J; Harman M
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1047-1055. PubMed ID: 30267644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-inflammatory coatings of hernia repair meshes: A pilot study.
    Gil D; Rex J; Cobb W; Reukov V; Vertegel A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):589-597. PubMed ID: 28263435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of resorbable polydioxanone and polyglycolic acid meshes in a rat model of ventral hernia repair.
    Fatkhudinov T; Tsedik L; Arutyunyan I; Lokhonina A; Makarov A; Korshunov A; Elchaninov A; Kananykhina E; Vasyukova O; Usman N; Uvarova E; Chuprynin V; Eremina I; Degtyarev D; Sukhikh G
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):652-663. PubMed ID: 30091512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose.
    Aydemir Sezer U; Sanko V; Gulmez M; Aru B; Sayman E; Aktekin A; Vardar Aker F; Yanıkkaya Demirel G; Sezer S
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1141-1152. PubMed ID: 30889648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits.
    Wei Z; Pan P; Hong FF; Cao Z; Ji Y; Chen L
    Carbohydr Polym; 2021 Jul; 264():118002. PubMed ID: 33910735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.
    Farooq A; Patoary MK; Zhang M; Mussana H; Li M; Naeem MA; Mushtaq M; Farooq A; Liu L
    Int J Biol Macromol; 2020 Jul; 154():1050-1073. PubMed ID: 32201207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Cellulose-Basalt Polypropylene Composites with Enhanced Compatibility: The Role of Coupling Agent.
    Sergi C; Sbardella F; Lilli M; Tirillò J; Calzolari A; Sarasini F
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32987669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of nanocellulose and its potential in reinforced composites: A review.
    Wang J; Liu X; Jin T; He H; Liu L
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):919-946. PubMed ID: 31122154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications.
    Klemm D; Petzold-Welcke K; Kramer F; Richter T; Raddatz V; Fried W; Nietzsche S; Bellmann T; Fischer D
    Carbohydr Polym; 2021 Feb; 254():117313. PubMed ID: 33357876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.