These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30261126)

  • 21. A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites.
    Ziraki S; Zebarjad SM; Hadianfard MJ
    J Mech Behav Biomed Mater; 2016 Apr; 57():289-96. PubMed ID: 26874087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of mesh topology in the abdominal wall repair process.
    De Maria C; Burchielli S; Salvadori C; Santoro V; Montemurro F; Orsi G; Vozzi G
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1220-8. PubMed ID: 26097153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histopathologic host response to polypropylene-based surgical mesh materials in a rat abdominal wall defect model.
    Huber A; Boruch AV; Nieponice A; Jiang H; Medberry C; Badylak SF
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):709-17. PubMed ID: 22128072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
    Alemán-Domínguez ME; Giusto E; Ortega Z; Tamaddon M; Benítez AN; Liu C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):521-528. PubMed ID: 29717804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Development of better tolerated prosthetic materials: applications in gynecological surgery].
    Debodinance P; Delporte P; Engrand JB; Boulogne M
    J Gynecol Obstet Biol Reprod (Paris); 2002 Oct; 31(6):527-40. PubMed ID: 12407323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological and proteomic characterization of a composite mesh for abdominal wall hernia treatment: Reference Study.
    Vozzi F; Guerrazzi I; Campolo J; Cozzi L; Comelli L; Cecchettini A; Rocchiccioli S; Domenici C
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2045-2052. PubMed ID: 27388578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application.
    Poonguzhali R; Basha SK; Kumari VS
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):111-120. PubMed ID: 28698076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of flax fibers for biomedical applications.
    Michel SA; Vogels RR; Bouvy ND; Knetsch ML; van den Akker NM; Gijbels MJ; van der Marel C; Vermeersch J; Molin DG; Koole LH
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):477-87. PubMed ID: 24039184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals.
    Doineau E; Coqueugniot G; Pucci MF; Caro AS; Cathala B; Bénézet JC; Bras J; Le Moigne N
    Carbohydr Polym; 2021 Feb; 254():117403. PubMed ID: 33357891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of adhesive properties of five different prosthetic materials used in hernioplasty.
    Kayaoglu HA; Ozkan N; Hazinedaroglu SM; Ersoy OF; Erkek AB; Koseoglu RD
    J Invest Surg; 2005; 18(2):89-95. PubMed ID: 16036777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lightweight composites from long wheat straw and polypropylene web.
    Zou Y; Huda S; Yang Y
    Bioresour Technol; 2010 Mar; 101(6):2026-33. PubMed ID: 19939672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of plasmids in bacterial nanocellulose as gene activated matrix.
    Pötzinger Y; Rahnfeld L; Kralisch D; Fischer D
    Carbohydr Polym; 2019 Apr; 209():62-73. PubMed ID: 30732826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution.
    Plencner M; Prosecká E; Rampichová M; East B; Buzgo M; Vysloužilová L; Hoch J; Amler E
    Int J Nanomedicine; 2015; 10():2635-46. PubMed ID: 25878497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titanium coating of a polypropylene mesh for hernia repair: effect on biocompatibilty.
    Junge K; Rosch R; Klinge U; Saklak M; Klosterhalfen B; Peiper C; Schumpelick V
    Hernia; 2005 May; 9(2):115-9. PubMed ID: 15583967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue reactions of 5 sling materials and tissue material detachment strength of 4 synthetic mesh materials in a rabbit model.
    Yildirim A; Basok EK; Gulpinar T; Gurbuz C; Zemheri E; Tokuc R
    J Urol; 2005 Nov; 174(5):2037-40. PubMed ID: 16217389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.